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Many studies have shown that humans face a trade-off between the speed and accuracy with which they can make
movements. In this article, we asked whether humans choose movement time to maximize expected gain by taking into
account their own speed–accuracy trade-off (SAT). We studied this question within the context of a rapid pointing task in
which subjects received a reward for hitting a target on a monitor. The experimental design we used had two parts. First, we
estimated individual trade-offs by motivating subjects to perform the pointing task under four different time constraints.
Second, we tested whether subjects selected movement time optimally in an environment where they were rewarded for
both speed and accuracy; the value of the target decreased linearly over time to zero. We ran two conditions in which the
subjects faced different decay rates. Overall, the performance of 13 out of 16 subjects was indistinguishable from optimal.
We concluded that in planning movements, humans take into account their own SAT to maximize expected gain.
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Introduction

In executing any type of movement, there is typically a
trade-off between the speed with which the movement is
performed and the degree of precision with which it is
made. Fitts (1954) first provided a quantitative description
of the speed–accuracy relation in self-paced, cyclic
tapping movements. The characterization, often referred
to as Fitts’ law, stated that movement time is a logarithmic
function of task difficulty indexed by the ratio of move-
ment amplitude and target width. Subsequent research that
followed verified Fitts’ formal description in a wide range
of movement tasks (Crossman & Goodeve, 1983; Fitts &
Peterson, 1964; for reviews, see Meyer, Smith, Kornblum,
Abrams, & Wright, 1990; Plamondon & Alimi, 1997). It
has also been shown, however, that Fitts’ law fails in tasks
where subjects are asked to move to the target at a
specified time. Such tasks, often called temporally con-
strained tasks, differed from the spatially constrained tasks
that Fitts’ law described well. In temporally constrained
tasks, studies have often observed a linear relation
between spatial error and task difficulty. Attempts to
explain the divergent findings led to the development of
several important theories of speed–accuracy trade-off
(SAT; Meyer, Abrams, Kornblum, Wright, & Smith,

1988; Plamondon & Alimi, 1997; Schmidt, Zelaznik,
Hawkins, Frank, & Quinn, 1979) that incorporated the
empirical regularities under different task constraints.
The relation between speed and accuracy is often

critical to the final outcome of a movement, that is, its
final position. Consequently, whatever the form of the
SAT, it is critical to ask if agents take into account their
own SAT when planning movements. A recent study by
Augustyn and Rosenbaum (2005) showed that human
subjects’ choice of starting position of movement between
two targets reflects knowledge of the SAT predicted by
Fitts’ law. In daily situations, many motor tasks require
the agent to perform with high accuracy at high speed, in
the sense that the task rewards both speed and accuracy. In
such contexts, the agent immediately faces a decision
problem that requires the knowledge and consideration of
his or her own SAT: Should he or she move too fast, he or
she would gain advantage in speed but sacrifice accuracy;
should he or she slow down his movements, he or she
would achieve higher accuracy but with loss of speed.
In this study, we examined whether humans can take

into account their own SAT in tasks that reward both
speed and accuracy and if they do so optimally. To
model this decision, we extended a previous model
proposed by Trommershäuser, Gepshtein, Maloney,
Landy, and Banks (2005) and Trommershäuser, Maloney,
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and Landy (2003a, 2003b). In a series of studies,
Trommershäuser et al. successfully modeled movement
planning as the solution to an optimal control problem.
Their model assumes that movement strategies are chosen
to maximize expected gain given the costs and benefits
explicitly implemented in the environment. When choosing
a strategy, the movement planner takes into account his or
her own intrinsic motor variability. Their models do well
in predicting movement endpoints chosen by the subjects
in rapid, goal-directed pointing tasks (but see Wu,
Trommershäuser, Maloney, & Landy, 2006, on the limits
to movement planning).
Those studies, however, did not model the SAT of a

subject, a ubiquitous feature underlying almost every
movement. The experiments of Trommershäuser et al.
effectively fixed the length of time a subject had to
perform the task by imposing a large “timeout” monetary
penalty. As time taken to perform the task varied little
from trial to trial after extensive training, their model
treated motor variability as exogenously fixed for each
subject (although motor variability was modeled as
varying between subjects). This constraint is, however,
artificial. In most tasks, a person gets to choose how long
he or she takes over a movement and, hence, the accuracy
of that movement. The degree of motor variability that
a person faces becomes an endogenous choice variable.
We therefore extended the model of Trommershäuser
et al. by incorporating this choice into a new optimization
model and compared its predictions to subjects’ motor
behavior.
Our experimental design had two sessions: a training

session and an experimental session. In the training
session, we ran a sequence of treatments in which subjects
were rewarded for performing a pointing task within
various time limits. In the experimental session, subjects
performed the same pointing task, but in this case, the
reward for successfully hitting the target decreased
linearly with time after its presentation. We used data
from both the training and experimental sessions to
estimate the relationship between movement speed and
accuracy for each subject. Armed with this estimated
speed–accuracy relationship, we could calculate the
optimal movement time for each subject in the exper-
imental session. Having done so, we compared the
predicted choice of movement time from the optimal
model to the actual choice of movement time exhibited by
the subjects.

Materials and methods

Overview

The environment in which we explored the trade-off
between speed and accuracy was similar to that
previously used to examine optimality in motor tasks

(Trommershäuser et al., 2003a, 2003b). Subjects were
presented with a circular visual stimulus on a touch
screen, which they aimed to hit with their index finger.
Hitting the target resulted in a monetary reward. Within
this structure, each subject took part in two sessions,
which we labeled the training session and the experimen-
tal session. The training session was designed to elicit the
subject’s SAT. Each subject was presented with four
treatments in which the subject was asked to perform the
pointing task within four different time limits. In each
treatment, the subjects received a monetary reward if they
hit the target within the time limit, but they received a
large monetary penalty if they failed to make contact with
the screen before the time limit expired.
The experimental session was designed to test whether

the subjects selected the right point on the SAT in
environments where there were benefits associated with
both quick and accurate movements. We therefore
presented each subject with tasks in which the reward
for successfully hitting the target decreased with the time
taken. Unlike the training session, there was no time limit
applied to the task. Instead, the subjects were free to
choose how much time to take in their movement. The
longer they took to make the movement, the more likely
they were to hit the target but the lower the reward for
doing so.
Each subject took part in two types of trial in the

experimental session: “fast” decay trials in which the
value of hitting the target decreased quickly and “slow”
decay trials in which it decreased more slowly. Subjects
were divided between two conditions, which varied only
in the speed of the fast decay rate and the initial value in
the fast decay trials. Condition A had a modest difference
in speed between the fast and slow rates. The results from
Condition A motivated us to run a second condition,
Condition B, in which the fast decay rate was faster than
that in Condition A, to see if subjects could perform as
well on this more difficult task.

Apparatus

A touch monitor (Elo IntelliTouch 17-in. LCD monitor)
was mounted vertically on a framework (Structural
Framing System, McMaster Carr Inc.). This framing
system was specifically selected to minimize the vibration
of the setup caused by the speeded reaching movement to
the monitor. A chin rest was used to control viewing
distance, which was 30 cm in front of the monitor. The
computer keyboard was mounted on the table and
centered in front of the monitor. The experimental room
was dimly lit. The experiment was run using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) on
a Pentium 4 Dell OPTIPLEX GX280. For each subject, at
the beginning of every experimental session, a calibration
procedure for touch location was performed to optimize
the accuracy of recorded endpoints.
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Stimuli
Training session

The subjects were asked to hit a green target (radius =
7 mm) within a given time limit. Subjects started every
trial by depressing the spacebar on the keyboard. Once
the spacebar was held down, a central fixation cross
appeared for 1.5 s and was followed by presentation of a
blue square region (74 � 74 mm) delimiting the possible
locations of the target. The fixation cross disappeared
after the blue region was displaced. The blue region was
always presented at a fixed location. Shortly after the
blue region was presented, the target and a “time” bar,
displayed horizontally on top of the blue region, were
presented simultaneously. The length of the time bar
indicated how much time remained before the time limit
was reached. Movement onset was defined as the time
the subject’s finger left the spacebar. To prevent subjects
from preplanning the movement, we perturbed both the
timing of target onset and the target location. The target
was presented 500 ms plus an amount drawn from a
uniform distribution with a range of 100 ms after the
onset of the blue region. Target location was perturbed
in both the x and y directions with a range of T23 mm
relative to the screen center.

Experimental session

The setup was the same as in the training session,
except that the time bar was replaced by a “money” bar to
indicate the target value that decreased over time. See the
Procedure section for details.

Procedure

The experiment comprised two conditions, A and B.
Each participant in the experiment took part in one
condition only. Each condition consisted of a training
session, in which participants were faced with explicit
time constraints, and an experimental session. The train-
ing sessions in the two conditions were identical. The
experimental session consisted of a mixture of fast decay
rate blocks and slow decay rate blocks, differentiated by
the speed at which the monetary reward decayed. The
slow decay times in the experimental sessions of both
conditions were identical (1,000 ms to decay from an
initial value of 100 points). The only differences between
Conditions A and B were the reward profile and the decay
times in the fast decay rate blocks in the experimental
session. The fast time to decay was 770 ms in Condition A
with an initial value of 100 points, whereas the fast time to
decay in Condition B was 606 ms with an initial value of
200 points.
All subjects took part in a training session and an

experimental session. A subject would participate in the

two sessions on separate days but within 48 hr of each
other.
In the training session, we implemented four time

constraints for the task. The first four subjects had the
following time limits: 400, 600, 800, and 1,000 ms. We
found that with the 800-ms limit, all subjects had more
than enough time to hit the target on essentially every
trial: Their performance was at a ceiling. Accordingly,
we reduced the time limits for the remaining subjects to
400, 535, 650, and 775 ms to improve estimation of the
SAT. The timer started upon target presentation, and the
time that the subject had left in a trial was indicated by
a horizontal white bar (the “time bar”) whose length
decreased continuously over time. The bar was dis-
played above the target configuration. On every trial,
subjects earned 100 points by hitting the target within
the time limit but received a 700-point penalty for not
hitting the screen within the time constraint. Hitting the
screen but missing the target within the time limit
earned the subject 0 points. At the end of the experi-
ment, points were converted into money for the subject
at a rate of 1 cent for every 20 points scored. Each
constraint was run in separate blocks of trials. The
entire session consisted of two runs, each consisting of
four blocks of different constraints. The order of
constraints was randomized for each run. Each block
started with 20 practice trials with no monetary
consequences, followed by 40 “live” trials. The subjects
were notified that the order of blocks was randomized
and that they had to make an effort to adjust speed
based on the time constraint of a particular block. All
subjects were advised to take breaks (3 min) between
blocks and shorter breaks as needed (20 s) in between
trials, especially within the block of shorter time
constraints, to minimize the impact of fatigue. The
training session took approximately 90 min to complete.
In the experimental session, the value of hitting the

target was not fixed but decreased linearly over time to
zero. There was no time limit to perform the task. We
implemented the two conditions, A and B, with different
sets of decay rates and assigned half of the subjects to
each set.
In Condition A, target initial value was fixed at 100

points and decreased at two rates, fast and slow, run in
two separate blocks. In the fast decay block, target value
decreased to zero at 770 ms after its presentation, whereas
target value decreased to zero at 1,000 ms after presenta-
tion in the slow decay block. In Condition B, we
drastically increased the faster decay rate to 606 ms and
also increased the initial value to 200 points. We increased
the initial value so that the maximum expected gain in the
slow and fast decay conditions would be roughly the
same. Subjects started each block with 40 practice trials
with no monetary consequences and performed 120 “live”
trials. The order of fast and slow blocks was balanced
across subjects. The experimental session took approx-
imately 45 min to complete.
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Figure 1 provides a graphical depiction of the different
decay rates, whereas Figure 2 provides a visual depiction
of the task (Panel A for the training session and Panel B
for the experimental session).

Subjects and instructions

Sixteen subjects, unaware of the purpose of the experi-
ment, participated. Among them, seven were male and
nine were female. Nine were graduate students from
the Department of Economics in New York University.
The remaining subjects were graduate students from the
Psychology Department or students from the Law School.
All subjects except for one were right handed, and all had
normal or corrected-to-normal vision. Informed consent
was given by all subjects prior to the experiment. Subjects
received US$36 (US$24 from the training session, US$12
from the experimental session) plus the additional bonus
they earned through their performance. Total payment
ranged from US$40 to US$55 across subjects.

Model of optimal movement planning

Subjects’ performance in the task was compared to an
optimal movement-planning model based on statistical
decision theory (Blackwell & Girshick, 1954; Berger,
1985; see Maloney, 2002, for discussion). The model is an
extension of Trommershäuser et al. (2003a, 2003b). Here,
we use “optimal” to refer to the maximization of expected
monetary reward.

A general form of such an optimization problem is as
follows:

Choose s Z S to maximize GðsÞ ¼
Z
G

RðgÞf ðgksÞdg; ð1Þ

where s is a motor strategy, S is the set of all possible
strategies, G is a set of outcomes (i.e., realized move-
ments), R:G Y R are the monetary penalties or rewards
associated with the events in G, and f(.ªs) is a probability
distribution over the outcome space G conditional on
choosing movement strategy s. The idea behind the model
is that, because of motor uncertainty, when an agent
selects a motor strategy, he or she is really selecting a
probability distribution over realized movements. The
model posits that the selected motor strategy should
maximize expected gain conditional on the probability
distribution generated by that strategy. The movement that
actually takes place is then drawn from this conditional
distribution.
In theory, S could be very large, containing a vast array

of motor strategies described as a detailed sequence of
motor commands. To make the model tractable, assump-
tions are used to reduce the strategy space to manageable
proportions. In Trommershäuser et al., a strategy consisted
of selecting a target point on the screen representing the
target for the endpoint of the movement. Thus, a strategy
could be represented as a tuple of x� and y� target
coordinates. An innovation of this article is to extend the
description of a strategy to include a time element. A
strategy therefore now consists of a tripleVan x� and a y�
coordinate representing the target endpoint and a time t�

Figure 1. Summary of decay conditions. Target gain, G (in points),
was plotted as a function of time (ms). (A) Decay conditions of
Condition A. Target value started at 100 points but decreased in
two different rates. In the slower decay rate blocks, the value
decreased to zero at 1,000 ms. In the faster decay rate blocks, the
value decreased to zero at 770 ms. Values started decreasing as
soon as the target appeared. (B) Decay conditions of Condition B.
The slow condition had the same decay rate as that in Condition A.
However, in the fast decay rate blocks, target value initiated at
200 points but decreased 3.3 times faster than the slow decay rate
blocks.

Figure 2. Stimulus configurations. (A) Stimulus configuration in the
training session. Subjects saw the circular target (radius = 7 mm)
within the blue rectangular region. Subjects had limited time to
attempt the target and earned fixed monetary reward (100 points =
5 cents). The time bar above the configuration decreased in
size continuously to indicate the amount of time left in a given trial.
(B) Stimulus configuration in the experimental session. Unlike the
training session, there was no time constraint in the experimental
session. Instead, target value decreased rapidly over time. The
time bar from the training session was replaced by a money bar to
provide continuous feedback on value.
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representing the target length of time to take over a
movement.
For this experimental design, we can simplify the above

general model significantly. First, assuming that spatial
errors are symmetric, the optimal choice of x and y is
trivial: One should always aim for the middle of the circle.
Thus, we do not model the choice of x and y explicitly.
Second, the reward that the agent receives depends only
on whether or not the target is hit and the time at which
the hit occurs. Third, although actual movement time will
be stochastic, we show in the Results section that the
probability of hitting the target depended only on planned
movement time and not on actual movement time. Thus,
we can rewrite Equation 1 as

Choose t
�Zðt*;VÞ to maximize

Gðt�Þ ¼
Z V

0

ðRðA; tÞpðAkt�Þ þ RðAc; tÞpðAckt
�ÞÞf ðtkt�Þdt; ð2Þ

where A is the event that the target is hit, Ac is the event
that the target is missed, t is actual movement time, R(.,t)
is the reward associated with a particular event occurring
when actual movement time is t, p(.ªt�) is the probability
of an event conditional on planned movement time t�, and
f(.ªt�) is the distribution of actual movement time condi-
tional on planned movement time. t* is a lower bound on
planned movement time.
To be able to solve for the agent’s optimal choice of t�

in the experimental session, we need to determine the
nature of p(Aªt�) and f(tªt�), both of which we do on an
individual-by-individual basis. We estimated the function
p(Aªt�) using the data gathered from both the training and
experimental sessions. To do so, we make two assump-
tions: First, we assume that E(tªt�) = t� or that the
expected length of time taken to perform a movement
conditional on a planned movement time is equal to that
planned movement time. Second, we assume that, for a set
of trials in a given treatment, the subject chooses the same
target time. We can then approximate the planned move-
ment time for a treatment by taking the sample average of
movement times within that treatment. Furthermore, we
can approximate the probability of hitting the target
associated with that planned movement time by calculat-
ing the proportion of hits within the same treatment. Thus,
the training and experimental sessions provide six points
on the SAT. We use these points to approximate the
function p(Aªt�).
Finally, we need to determine the nature of f(tªt�). We

assume that the distribution takes the form of a truncated
normal, with the truncation point set arbitrarily at 200 ms.
As discussed above, we assume that the mean of the
distribution is t�. Data from the training session suggest
that the variance of the distribution of t increases linearly
with t� in most subjects. We therefore modeled the timing
variance as a linearly increasing function of t�.

We are now in a position to calculate the optimal choice
of t� in the experimental session. In this session, the
reward for missing the circle was always zero, whereas
the reward schedule for hitting the circle, R(A, t), varied
between decay rate blocks. We therefore know everything
we need to calculate the optimal movement plan for a
particular agent in a particular treatment. As the optimi-
zation does not have an analytical solution given the
functional form we have chosen for f(tªt�), we found the
optimum by numerically computing G(t�).

Data analysis

For each trial, we recorded arrival time (time from
target onset to arrival at the touch monitor),1 the screen
position (x, y) that was hit, and the score. Movement
endpoints were recorded relative to the center of the target
circle.

The effect of planned time and actual time on spatial
accuracy

To determine the optimal arrival time for a subject, we
needed to determine the exact nature of the SAT that the
subjects faced. To begin with, we needed to determine
whether it was planned or actual movement time that
determined accuracy. To do so, we analyzed how spatial
accuracy was affected by planned arrival time and actual
arrival time separately. To do the former, and using the
assumption that mean arrival time accurately reflects
planned time within a treatment, we performed a
regression analysis on spatial accuracy by mean arrival
time. For each time constraint in the training session and
decay rate in the experimental session, we computed the
“absolute error” (the mean of the distance between
movement endpoints2 and target center) and mean arrival
time. We then regressed mean distance by mean arrival
time. To do the latter, for each individual, we regressed
the distance from target center on actual time taken and a
treatment dummy using all observations. By the assump-
tion that planned time does not vary within a treatment,
this gave us an estimate of the effect of actual time taken
on accuracy, having controlled for planned movement
time.

Estimating SAT

As explained in the Results section, we found that it is
planned arrival time and not actual arrival time that
determines accuracy. Accordingly, for each time con-
straint in the training session, we recorded the mean
arrival time and the corresponding probability of hitting
the target. Similarly, for each decay rate in the exper-
imental session, we recorded the mean arrival time and the
corresponding probability of hitting the target. This
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analysis gave us six data points (four from the training
session, two from the experimental session) to character-
ize each subject’s SAT. In analyzing the data from the
training session, we assumed only that the observer
executes the same movement plan when faced with the
same time limit. Similarly, in analyzing the data from the
experimental session, we assumed only that the subject
executes the same plan when faced with the same decay
rate. One concern with this assumption is that subjects
may have learned over the course of the experiment, and
hence, their plans may have changed for a given decay
rate. However, as we found no systematic difference in
mean movement time or accuracy between early and late
trials, we discount this possibility.
We selected the following functional form (McElree &

Carrasco, 1999) to characterize the trade-off between
speed (mean arrival time) and accuracy (probability of
hitting the target):

pðt�Þ ¼ "ð1j ejðt�j%Þ=1Þ; ð3Þ
where ", %, and 1 are estimated parameters. " captures the
asymptotic level of p, % captures the time point where p
rises from zero, and 1 describes the steepness of the trade-
off function. We estimated the parameters ", %, and 1
using maximum likelihood for each subject.3 Figure 3A
gives an example of the SAT function from subject M.A.

Model prediction

Given each subject’s estimated SAT, we computed the
expected gain G(t�) for each agent and for each decay rate.
The term t� referred to planned movement time. We then
searched G(t�) to find (t�MEG, MEG), where t�MEG is the

movement time that maximizes expected gain and MEG is
the maximal value for G(t�). Figure 3B gives an example
of the calculation of EG and MEG for subject M.A. under
the slow decay rate.
We emphasize that we rated a subject’s performance in

terms of efficiency: how close each subject comes to
predicted optimal performance based on his or her own
SAT and the constraints of the experimental task. With
faster movements (G250–300 ms), subjects’ measured
probabilities of hitting the target dropped to near 0, and
given a target whose value dropped to 0 within 250 ms,
we would expect subjects to earn very little. They would
almost always miss with the occasional lucky hit. Yet, a
subject in such a condition may still have a very high
efficiency because efficiency is based on a comparison of
what the subject wins in the task to the maximum possible
winnings with optimal choice of movement time. Con-
versely, in an easy condition, a subject may win a
considerable sum but have very low efficiency because,
given his measured SAT, he or she could be expected to
win much more with a different choice of movement time.
Thus, there is no a priori relation between task difficulty
and efficiency.

Efficiency

We defined efficiency as the actual average score a
subject achieved divided by the MEG for that subject. We
computed efficiency for each subject and each decay rate
in the experimental session. We computed the 99%
confidence interval of efficiency using bootstrap methods
(Efron & Tibshirani, 1993) as follows. We assumed that
the distribution of arrival time in each case is a truncated
Gaussian (t�;At�) and estimated the mean and standard
deviation from the observed data. Knowing (t�;At�) and the
probability of hit estimated from the experiment, we
simulated 10,000 runs of the experiment with each run
consisting of 10,000 trials. For each run, we computed the
average score of the simulated experiment. As a result, we
obtained 10,000 average simulated scores. We computed
10,000 bootstrap estimates of the parameter set for the
SAT function and performed EG computation to search
for MEG. As a result, we obtained a distribution of MEG
(10,000 replications per estimate). We randomly selected
one average simulated score and MEG to compute
efficiency and repeated this operation for 10,000 times to
obtain the 99% confidence interval.

Results

The effect of planned time and actual time on
spatial accuracy

Table 1 shows the results of the regression of accuracy
on planned movement time, whereas Table 2 shows the

Figure 3. Calculation of maximum expected gain for subject M.A.
in the slow decay rate block. (A) The two components of the MEG
calculation. The probability of hitting the target was plotted as a
function of mean arrival time. Six data points came from the
training session (four points) and experimental session (two
points). The blue curve was the estimated SAT. Green line: points
gained for hitting the target plotted as a function of time in the slow
decay rate block. (B) Expected gain, EG, plotted as a function of
time. The orange line was EG( t

�
). This line can be thought of as

representing the product of the two lines shown in Panel A. The
green diamond indicated the maximum.

Journal of Vision (2007) 7(5):10, 1–12 Dean, Wu, & Maloney 6



results of the regression of accuracy on actual movement
time, controlling for planned movement time. Although
not unanimous, results of the regressions indicated that
changes in planned movement time have an important
effect on accuracy, whereas changes in actual movement
time conditional on planned movement time did not. Ten of
the 16 subjects showed a relationship between accuracy and
planned movement time, which was significant at the 5%
level. In comparison, only five subjects showed a statisti-
cally significant relationship between accuracy and actual
movement time once planned movement time had been
controlled for. This is true despite the fact that there were
more observations (by two orders of magnitude) for the
actual movement time regression than for the planned
movement time regression (560 trials vs. 6 treatments).
Furthermore, the average of the estimated coefficient on
planned movement time across subjects was much larger
than that for actual movement time (j0.035 vs. j0.005).
Thus, we take this as evidence to support our model in which
accuracy is determined only by planned movement time.4

Estimating SAT

All subjects’ estimated SATs are provided in the
supplementary document.

Model comparison
Condition A

In Figure 4A, we plotted mean arrival time against
MEG timing in Condition A. If subjects were close to
optimal in their timing, the points should lie on the 45-
diagonal line. We regressed actual timing against MEG
timing and found that the slope of the regression was
significantly different from zero but not significantly
different from 1 at the 5% level, whereas the intercept
was not significantly different from zero at the same level.
The first of these results indicated that MEG timing was
significantly and positively related to actual timing,
whereas the second indicated that we cannot reject the
hypothesis that these points were distributed around the
45- line. Although most subjects were fairly close to being
optimal, we observed that subjects tended to be slightly
slower than predicted as most points lay above the line.
This was particularly true for the fast decay rate, with the
extent to which subjects were slower than the model
prediction was more pronounced in the fast decay rate in
six out of eight subjects. This suggested that, for most
subjects, the change in planned timing between the slow
and fast decay rates was smaller than predicted by the
model. Figure 4B plotted the observed change in average
arrival time between fast and slow decay rate trials against
the change in MEG timing across subjects. Again, as we
regressed actual on predicted change, we cannot reject the
hypothesis that the slope was 1 and the intercept was 0 at
the 5% level.

Coefficient SE p 95% Confidence interval

1 j0.0384 0.0093 .02* j0.0643, j0.0125
2 j0.0317 0.0092 .03* j0.0573, j0.0062
3 j0.0026 0.0023 .31 j0.0089, 0.0036
4 j0.0318 0.0058 .01* j0.0479, j0.0158
5 j0.0078 0.0040 .12 j0.0188, 0.0032
6 j0.0211 0.0025 .00* j0.0280, j0.0141
7 j0.0244 0.0065 .02* j0.0426, j0.0063
8 j0.0315 0.0040 .00* j0.0426, j0.0204
9 j0.0225 0.0064 .03* j0.0404, j0.0046

10 j0.0376 0.0048 .00* j0.0511, j0.0242
11 j0.0609 0.0226 .06 j0.1238, 0.0019
12 j0.0201 0.0063 .03* j0.0375, j0.0027
13 j0.0197 0.0093 .10 j0.0455, 0.0060
14 j0.0109 0.0054 .12 j0.0259, 0.0042
15 j0.1914 0.0618 .04* j0.3629, j0.0198
16 j0.0078 0.0042 .13 j0.0194, 0.0038

Table 1. Ordinary least squares results for the regression of
accuracy on planned movement time for each subject. The
dependent variable was the mean distance of movement endpoint
from the target within each treatment. This was regressed on the
mean movement time within each treatment and a constant. The
four treatments from the training session and the two treatments
from experimental session provided six data points for each
subject. The table reports the estimated coefficient on mean
movement time, the standard error of the estimate, the probability
level at which one can reject the hypothesis that the coefficient is
equal to zero, and the 95% confidence interval for the coefficient.
*p G .05.

Coefficient SE p 95% Confidence interval

1 j0.0038 0.0029 .18 j0.0095, 0.0018
2 j0.0137 0.0027 .00* j0.0191, j0.0083
3 j0.0034 0.0018 .06 j0.0069, 0.0002
4 j0.0147 0.0028 .00* j0.0202, j0.0092
5 j0.0036 0.0029 .21 j0.0092, 0.0021
6 j0.0035 0.0025 .17 j0.0084, 0.0015
7 j0.0074 0.0026 .01* j0.0126, j0.0022
8 j0.0039 0.0042 .36 j0.0121, 0.0044
9 j0.0045 0.0028 .12 j0.0100, 0.0011

10 j0.0058 0.0032 .07 j0.0121, 0.0005
11 j0.0004 0.0065 .95 j0.0132, 0.0124
12 j0.0124 0.0037 .00* j0.0197, j0.0052
13 j0.0044 0.0033 .18 j0.0108, 0.0021
14 j0.0102 0.0019 .00* j0.0140, j0.0065
15 j0.0086 0.0092 .35 j0.0095, 0.0267
16 j0.0038 0.0029 .18 j0.0095, 0.0018

Table 2. Ordinary least squares results for the regression of
accuracy on actual movement time controlling for planned move-
ment time. The dependent variable was the distance of movement
endpoint from the target for each trial. The dependent variables
were the actual time taken for the movement, a set of dummies to
indicate which treatment the observation came from, and a
constant. Each regression had 560 observations. The reported
statistics are as described for Table 1. *p G .05.
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Condition B

In Condition B, both the initial value and the slope of
the value function increased in fast decay rate trials. The
value started at 200 points and decreased 3.3 times faster
in the fast rate trials than in the slow rate trials. With this
combination of value and slope, MEG was approximately
equal between the two rates based on simulations of
expected gain obtained from all subjects in Condition A.
One of the reasons for running this second condition is
that the large difference in decay speeds led to a much
larger difference in optimal arrival time between the two
decay rates. As shown in Figure 5A, subjects’ timing was
close to the model prediction for both fast and slow decay
rates. Regression analysis again showed that actual time
was positively and significantly related to MEG time and
that there was no difference in both the slope and the
intercept from the diagonal line at the 5% level. As in
Condition A, we observed that subjects tended to be
slightly slower than predicted. However, subjects did
speed up in the fast decay rate blocks in response to the
much faster decay rate, as can be seen in Figure 5B. The
tendency for slowness was little more marked for
the extremely fast decay rates in Condition B than in the
fast decay rate of Condition A.

Efficiency

Figure 6 shows subjects’ efficiency along with the 99%
confidence interval. In Condition A, seven of the eight
subjects achieved efficiency, which was indistinguishable
from 100% at the 1% confidence level for both decay
rates. The point estimates for efficiency were also above

90% for all subjects except for one. It is clear that while
subjects tended to be slower than the model prediction for
the fast decay rate, this did not seriously affect their
performance as most subjects’ efficiency was not dis-
cernible from optimal.
In Condition B, 100% efficiency lay within the 99%

confidence interval for all subjects for the slow decay rate.
To our surprise, six of eight subjects were indistinguish-
able from 100% efficiency in the fast decay rate blocks.
This suggested to us that subjects shifted their timing to
achieve near-optimal performance even in much more
difficult tasks where the optimal speed was close to the
fastest they had performed in the training session.

Discussion

In recent years, researchers in areas as diverse as animal
foraging (Stephans & Krebs, 1986), perception (Geisler,
1989; Knill & Richards, 1996; Rachlin, Battalio, Kagel, &
Green, 1981), and neuroscience (Glimcher, 2002) have
increasingly employed decision theoretical or game
theoretical models of behavior associated with the
literature in economics and mathematical statistics. Many
of these models are effective models of optimal allocation
of scarce resources (time, effort) and are readily recast as
microeconomics. Winterhalder (1983), for example,
argued that the economic analysis of optimal allocation
in the face of budget constraints provides a framework to
model and predict time and energy allocation during
foraging behavior, which was absent in most optimization
models based on energy rate maximization (see chapter 5

Figure 5. Model comparison for Condition B. (A) Model compar-
ison on timing. Actual mean arrival time was plotted against MEG
timing across eight subjects. The decay conditions were color
coded. Orange indicated fast decay, and green indicated slow
decay. (B) Model comparison on timing difference between the
two decay rates. Actual difference in mean arrival time between
the two rates was plotted against the MEG timing difference.

Figure 4. Model comparison for Condition A. (A) Model compar-
ison on timing. Actual mean arrival time was plotted against MEG
timing across eight subjects. The decay conditions were color
coded. Orange indicated fast decay, and green indicated slow
decay. (B) Model comparison on timing difference between the
two decay conditions. Actual difference in mean arrival time
between the two decay rates was plotted against the MEG timing
difference.
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of Stephens & Krebs, 1986). In neuroscience, researchers
seek to determine how the nervous system makes
decisions and how trade-offs are represented and resolved
(Dorris & Glimcher, 2004; Platt & Glimcher, 1999;
Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003).
In this article, we employed similar methods to model

and investigate the trade-off between speed and accuracy
in simple economic tasks that involved pointing move-
ments. In our experiment, each subject attempted to touch
small targets whose value decreased linearly to zero over
time (“time to decay”). The subjects earned a reward only
if they hit the target, and the amount of reward depended
on the duration of the movement. The faster the subject
moved, the smaller the chances of hitting the target. The
slower the subject moved, the less reward he or she would
earn by hitting the target. The movement duration that
maximized expected gain depended on the subjects’
intrinsic SAT for this task as measured by their probability
of hitting the target as a function of movement duration.
In a preliminary part of the experiment, we estimated the
SAT curve for each subject. With this information, we
could predict the choice of movement time that would
maximize expected gain for each subject for each choice
of decay rate. We measured performance for each subject
for two different decay rates. We compared human
performance to an optimal movement planner that takes
into account his or her own SAT and the reward function
to select a movement strategy that maximizes expected
reward.
Our work in the time domain is analogous to earlier

work in the spatial domain (e.g., Körding & Wolpert,
2004; Trommershäuser et al., 2003a, 2003b; Wu et al.,
2006) in the sense that all have expanded the use of
statistical decision theory to assess the capability and the
limitations of the human motor system. Our work is also a
natural extension of previous work on SATs. SATs in

human movement have been extensively studied (Meyer
et al., 1988). In much of this work, the experimenter either
varies speed as an independent variable and measures
accuracy (Schmidt et al., 1979) or specifies accuracy and
measures the maximum achievable speed of movement
(Fitts, 1954; Fitts & Peterson, 1964). In this study, we go
beyond this previous literature by challenging the subject
to select the optimal trade-off between speed and accuracy
in a simple economic task.
Subjects’ choices of movement time for each decay

rate came close to the optimal SAT for that rate. In
Condition A of the experimental session, we tested eight
subjects with decay times of 1,000 and 770 ms (decay
time was constant in any one block of trials). Subjects
selected movement durations that were close to optimal,
although they seemed to move slightly slower than
predicted, particularly under the fast decay rate.
Although subjects were consistently slower than optimal,
the consequences for their earnings were slight. We
quantified each subject’s efficiency as the ratio of actual
earnings to the maximum expected gain possible given
the subject’s measured SAT, separately for each decay
time. Efficiencies were high: ranging from 62% to 119%
with a median of 101.5% (Figure 6A). We then ran a
second condition (Condition B) with a separate group
of subjects, in which we kept the slow decay time at
1,000 ms but decreased the faster decay time to 606 ms
and doubled the initial value for fast decay trials. By
doubling the initial value, we roughly equated the
maximum expected gain in the fast and slow decay
blocks of Condition B. We found that, while subjects
continued to respond slightly slower than the optimal
time predicted by our model, the faster decay rate did
not lead to reduced efficiency. In fact, six of the eight
subjects in the fast decay trials in Condition B achieved
efficiency indistinguishable from 100%.

Figure 6. Efficiency. (A) Performance efficiency for subjects in Condition A. (B) Efficiency for subjects in Condition B. Efficiency is defined
as the actual average score divided by the MEG. For each decay condition and subject, we computed efficiency and its 99% confidence
interval using the bootstrap method (Efron & Tibshirani, 1993).
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Our first conclusion is that subjects chose movement
times that came close to maximizing expected gain for all
choices of decay rates, in both the relatively benign
conditions of Condition A and the more challenging
conditions of Condition B. In more detailed analyses, we
also found that planned movement time, not actual
movement time, determined accuracy. To our knowledge,
we are the first to demonstrate that planned movement
time, not actual movement time, determines the trade-off
between speed and accuracy.
Although most subjects’ performance was close to

optimal, subjects shared one clear pattern of deviation
from optimal performanceVthe slight but systematic
slowness in movement time compared to the optimal
solution that we described above. We advance two
possible conjectures for this discrepancy. The first
conjecture in purely economic terms is that subjects were
exhibiting risk aversion. Risk aversion refers to the
willingness to trade off lower expected reward for an
increase in the probability of a good outcome. It is well
known that humans are typically risk averse (see, e.g.,
Holt & Laury, 2002). In our task, subjects had a higher
probability of hitting the target (and hence a lower chance
of winning nothing) when the movement was slower.
Thus, the slight but consistent deviations from optimal
timing that we found may suggest that our subjects were
simply risk averse. They were sacrificing some of their
expected reward to pay to increase the chances of winning
something on each trial.
Alternatively, the same pattern of deviations could be

explained in motor terms as a trade-off between monetary
gain and biomechanical cost. Several groups of research-
ers have proposed that the motor system seeks to
minimize specific biomechanical costs including muscle
tension change (Dornay, Uno, Kawato & Suzuki, 1996),
joint mobility (Soechting & Lacquaniti, 1981), mean
torque change (Uno, Kawato, & Suzuki, 1989), and rate
of change in acceleration (Flash & Hogan, 1985).
Trommershäuser et al. (2003a, 2003b) proposed that
individuals would trade off expected monetary gain for a
decrease in biomechanical cost (“less gain, less pain”). If,
in our experiment, the biomechanical costs incurred by
faster movements were higher than those for slower
movements and if the motor system were willing to “pay
for” reduced biomechanical costs, we would expect to
overestimate movement speed in our experiment.
We can compute a “biomechanical premium” directly

from subjects’ data. We found that subjects in Condition
A were, on average, slower than predicted by 23 ms in the
slow decay trials and 35 ms in the fast decay trials. The
consequent reduction in expected gain (the “premium”)
averaged across subjects was 0.72 points (slow decay) and
1.21 points (fast decay), on average, per trial. For
Condition B, the corresponding premiums averaged across
subjects were 0.81 points (slow decay) and 5 points (fast
decay) per trial. Across conditions and subjects, the cost
of the premium was, on average, 1.9 points (0.1 cents) per

trial. This suggested that the subjects were willing to pay
the highest premium to “slack off” in the fast decay trials
of Condition B.
Either the risk aversion or the biomechanical premium

conjecture or both together could account for the system-
atic deviations from optimal performance we observed.
Both possibilities deserve further investigation as both are
part of a model of human movement planning, which
proposes that even the simplest action is the result of a
rapid, sophisticated, nearly optimal evaluation of, and
trade-off among, the likely costs and benefits associated
with the possible outcomes of a movement.
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Footnote

1

We use the terms “arrival time” and “movement time”
interchangeably in this article, although one might more
correctly think of arrival time as being made up of a
“reaction time” prior to movement onset followed by a
“movement time.” In fact, reaction time was almost
constant across treatments for any given subject; hence,
an alternative analysis based on postreaction movement
time would yield the same result.

2

As the “bias” in our data (difference between the mean
of movement endpoints and target location) was small,
our analysis would not be significantly altered by instead
using the “variable error” or the standard deviation of
movement endpoints within a treatment.

3

We place restrictions on the parameter space such that
" e 1, % Q 50, and 1 Q 50 to ensure a reasonable shape for
the SAT. All our estimates lay on the interior of the
restricted parameter space.

4

Note that the standard errors for the regression
coefficients for planned arrival time were smaller than
those for actual arrival time, and thus, it is unlikely that our
results were driven by lack of variation in actual arrival
time conditional on planned arrival time. In general, the
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variance of average time taken across treatments was less
than twice that of the variance of time taken within
treatments.

References

Augustyn, J. S., & Rosenbaum, D. A. (2005). Metacog-
nitive control of action: Preparation for aiming
reflects knowledge of Fitts’s law. Psychonomic
Bulletin & Review, 12, 911–916. [PubMed]

Berger, J. O. (1985). Statistical decision theory and
Bayesian analysis (2nd ed.). New York: Springer.

Blackwell, D., & Girshick, M. A. (1954). Theory of games
and statistical decisions. New York: Wiley.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10, 433–436. [PubMed]

Crossman, E. R., & Goodeve, P. J. (1983). Feedback
control of hand-movement and Fitts’ law. Quarterly
Journal of Experimental Psychology A: Human
Experimental Psychology, 35, 251–278. [PubMed]

Dornay, M., Uno, Y., Kawato, M., & Suzuki, R. (1996).
Minimum muscle-tension change trajectories predicted
by using a 17-muscle model of the monkey’s arm.
Journal of Motor Behavior, 2, 83–100. [PubMed]

Dorris, M. C., & Glimcher, P. W. (2004). Activity in
posterior parietal cortex is correlated with the
relative subjective desirability of action. Neuron,
44, 365–378. [PubMed] [Article]

Efron, B., & Tibshirani, R. (1993). An introduction to the
bootstrap. New York: Chapman-Hall.

Fitts, P. M. (1954). The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47,
381–391. [PubMed]

Fitts, P. M., & Peterson, J. R. (1964). Information capacity
of discrete motor responses. Journal of Experimental
Psychology, 67, 103–112. [PubMed]

Flash, T., & Hogan, N. (1985). The coordination of arm
movements: An experimentally confirmed mathemat-
ical model. Journal of Neuroscience, 5, 1688–1703.
[PubMed] [Article]

Geisler, W. S. (1989). Sequential ideal-observer analysis
of visual discriminations. Psychological Review, 96,
267–314. [PubMed]

Glimcher, P. (2002). Decisions, decisions, decisions:
Choosing a biological science of choice. Neuron, 36,
323–332. [PubMed] [Article]

Holt, C. A., & Laury, S. K. (2002). Risk aversion and
incentive effects. American Economic Review, 92,
1644–1655.

Knill, D. C., & Richards, W. (1996). Perception as
Bayesian inference. Cambridge, UK: Cambridge
University Press.

Körding, K. P., & Wolpert, D. M. (2004). Bayesian
integration in sensorimotor learning. Nature, 427,
244–247. [PubMed]

Maloney, L. T. (2002). Statistical decision theory and
biological vision. In D. Heyer & R. Mausfeld (Eds.),
Perception and the physical world: Psychological
and philosophical issues in perception (pp. 145–189).
New York: Wiley.

McElree, B., & Carrasco, M. (1999). The temporal
dynamics of visual search: Evidence for parallel
processing in feature and conjunction searches.
Journal of Experimental Psychology: Human Percep-
tion and Performance, 25, 1517–1539. [PubMed]

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright,
C. E., & Smith, J. E. (1988). Optimality in human
motor performance: Ideal control of rapid aimed
movements. Psychological Review, 95, 340–370.
[PubMed]

Meyer, D. E., Smith, J. E. K., Kornblum, S., Abrams, R. A.,
& Wright, C. E. (1990). Speed-accuracy trade-offs in
aimed movements: Toward a theory of rapid
voluntary action. In M. Jeannerod (Ed.), Attention
and Performance XIII (pp. 173–226). Hillsdale, NJ:
Lawrence Erlbaum.

Pelli, D. G. (1997). The VideoToolbox software for visual
psychophysics: Transforming numbers into movies.
Spatial Vision, 10, 437–442. [PubMed]

Plamondon, R., & Alimi, A. M. (1997). Speed/accuracy
trade-offs in target-directed movements. Behavioral
and Brain Sciences, 20, 279–303. [PubMed]

Platt, M. L., & Glimcher, P. W. (1999). Neural correlates
of decision variables in parietal cortex. Nature, 400,
233–238. [PubMed]

Rachlin, H., Battalio, R., Kagel, J., & Green, L. (1981).
Maximization theory in behavioral psychology.
Behavioral and Brain Sciences, 4, 371–388.

Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., &
Cohen, J. D. (2003). The neural basis of economic
decision-making in the ultimatum game. Science, 300,
1755–1758. [PubMed]

Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., &
Quinn, J. T. (1979). Motor-output variability: A
theory for the accuracy of rapid motor acts. Psycho-
logical Review, 47, 415–451. [PubMed]

Soechting, J. F., & Lacquaniti, F. (1981). Invariant
characteristics of a pointing movement in man. Journal
of Neuroscience, 1, 710–720. [PubMed] [Article]

Stephans, D. W., & Krebs, J. R. (1986). Foraging theory.
Princeton, NJ: Princeton University Press.

Journal of Vision (2007) 7(5):10, 1–12 Dean, Wu, & Maloney 11

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16524010&query_hl=3&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9176952&query_hl=63&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6571310&query_hl=12&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12529211&ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15473973&query_hl=24&itool=pubmed_docsum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSS-4DJ38WF-M&_user=30681&_coverDate=10/14/2004&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000000333&_version=1&_urlVersion=0&_userid=30681&md5=96cfc92a06c2922e46bea43e6fd42d6f
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=13174710&query_hl=67&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14114905&query_hl=67&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=4020415&query_hl=26&itool=pubmed_docsum
http://www.jneurosci.org/cgi/reprint/5/7/1688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2652171&query_hl=72&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12383785&query_hl=28&itool=pubmed_docsum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSS-4712P20-C&_user=10&_coverDate=10%2F10%2F2002&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7f42a19b53d43aff336b7bf79ce28c68
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14724638&query_hl=75&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10641310&query_hl=34&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=3406245&query_hl=80&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9176953&query_hl=81&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10096999&query_hl=83&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10421364&query_hl=36&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12805551&query_hl=41&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=504536&query_hl=44&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7346580&query_hl=46&itool=pubmed_docsum
http://www.jneurosci.org/cgi/reprint/1/7/710
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