Integration of cues

* Quick review of depth cues

» Cue combination: Minimum variance

» Cue combination: Bayesian

* Nonlinear cue combination: Causal models
« Statistical decision theory

Distance, depth, and 3D shape
cues

+ Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

« Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

* Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

+ Binocular cues: convergence, stereopsis/binocular
disparity

* Cue combination

Basic distinctions

» Types of depth cues
— Monocular vs. binocular
— Pictorial vs. movement
— Physiological
* Depth cue information
— What is the information?
— How could one compute depth from it?
— Do we compute depth from it?

— What is learned: ordinal, relative, absolute depth,
depth ambiguities

Definitions

Distance: Egocentric distance, distance
from the observer to the object

Depth: Relative distance, e.g., distance
one object is in front of another or in front
of a background

Surface Orientation: Slant (how much) and
tilt (which way)

Shape: Intrinsic to an object, independent
of viewpoint

Distance, depth, and 3D shape
cues

* Pictorial depth cues: familiar size, relative size,
[brightness], occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

Epstein (1965) familiar size
experiment

How far away
is the coin?




Monocular depth cues

Retinal projection
depends on size
and distance

Relative size as a cue to depth

Relative size as a cue to depth

s

Occlusion as a cue to depth

rm

Shading, reflection, and illumination

illumination occlusion reflection shading

Q
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Shading - prior of light-from-above




Shading (flip the photo upside-down)

Cast Shadows

Dynamic Cast Shadows

Shading and contour

!

Aerial/Atmospheric Perspective

Geometry of Linear Perspective

Retinal projection
depends on size and
distance:

Size in the world
(e.g., in meters) is
proportional to size in
the retinal image (in
degrees) times the
distance to the object




Linear perspective

Size
constancy

Texture

1. Density
2. Foreshortening
3. Size

Height Within the Image

Distance, depth, and 3D shape
cues

* Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

» Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

* Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

» Binocular cues: convergence, stereopsis/binocular
disparity

Monocular Physiological Cues

» Accommodation — estimate depth based
on state of accommodation (lens shape)
required to bring object into focus

* Blur — objects that are further or closer
than the accommodative distance are
increasingly blur

+ Astigmatic blur

* Chromatic aberration




Distance, depth, and 3D shape
cues

Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour
Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

Binocular cues: convergence, stereopsis/binocular
disparity

Motion Parallax

The Kinetic Depth Effect

Dynamic (Kinetic) Occlusion

Distance, depth, and 3D shape
cues

Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour
Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

Binocular cues: convergence, stereopsis/binocular
disparity

Vergence Angle As One
Binocular Source
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Vergence Angle As One
Binocular Source

Vergence Angle As One
Binocular Source

Vergence Angle As One
Binocular Source

Binocular I
disparity

Disparity

Uncrossed disparity —'V/\
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How to make a random-dot stereogram

Left eye image Right eye image

Depth Cue Combination: Issues

1. How do you put all of the depth cue
information together?
2. What do you do when cues disagree?

Alittle ... ?
Aot

3. How much weight should each cue
get?

When cues disagree ...

T

Linear Perspective  Relative size

Accommodation

Information Fusion Problem
Multiple sources of information,
possibly in error, possibly

contradictory

How combine the information into
a single judgment?

Rashomon




Optimal Cue Combination: Minimum Variance

E(X)=t, E(X)=H,

i

: . 2 2
Variances: 0, < o, Just use one cue?

Suppose we use a linear cue-combination rule:

_ weighted linear
X =w X +w, X,  bination

E[X]=wE[X, |+ W,E[X,]=(w,+w,)u

unbiased?

Minimum-Variance Cue Combination

X =wX, +(1 - w) X, unbiased
Var(X) = W2Var(X1)+(1—W)2 Var(XZ)

2
=w?c? + (1 - w) o} minimize

Var (X)=w?c? +(1-w) o2

02 0.4 06 0.8 1

Minimum-Variance Cue Combination

X =wX,+(1-w)X,
Var(X): w2Var(X1)+(1—w)2 Var(Xz)
Choose w to minimize variance:

1o
_1/0'12+1/0'§

Reparamerization

Define reliability r. = 6,2

X=wX,+w,X,
weight proportional to reliability
2
__ Vo __n
2 2
1o;+110, r+r,

r=rn+r reliabilities add

Perturbation Methodology and
Influence Measures

How can we measure the influence of various
cues on perceptual judgments in complex scenes?

Goal: Change the stimulus as little as we possibly
can.




Perturbation Method

Observer adjusts ...

.

Two Depth Cues E—

Example: Texture and Motion

44 an 6.6 an

Perturbation Method

Observer adjusts ...

(?

. ﬁ

Perturbation Method

One possibility ...

. .

Perturbed
Cue....
Two Depth Cues E—
Perturbation Method
Observer is using only One possibility ...
the perturbed cue.
Perturbed
Cue....

Two Depth Cues E—

Perturbed
Cue....
Two Depth Cues E—
Perturbation Method
Another possibility ...
Perturbed
Cue....
Two Depth Cues E—




Perturbation Method

A final possibility ...
Perturbed
Cue....
Two Depth Cues E—

Perturbation Method
Observer is not using Another possibility ...
the perturbed cue at all.

Perturbed
Cue ....
Two Depth Cues E—
Perturbation Method
We will measure the A final possibility ...
influence of the cue
on the observer’s setting.
Perturbed
Cue ....

Two Depth Cues E—

Influence Measures

Change in
- observer’s setting

] — setting

cue A
/.

Influence of
the cue

cue

S

Perturbation of
the cue

Texture and Motion: Data

MJVrdk:66cm

6.6 |

Consistent-Cues Depth (cm)
Perceived Equivalent

44

4.4 55 6.6 7.1 8.8
d, (cm)

Optimal Cue Combination: Bayesian

Compute posterior:

p(x,, x, | depth)p(depth)
p(X; X,)

p(depth| x,,x,) =

Assume conditional independence:

p(depth| x,, x,) < p(x, | depth)p(x, | depth)p(depth)

If likelihoods and prior are Gaussian, so is
posterior, and means and reliabilities are as in

minimum-variance case. Prior acts like a static cue.

10



Optimal Cue Combination: Bayesian

p(depth| x,,x,) = p(x, | depth)p(x, | depth)p(depth)

Depending on cost function and priors, choose:

ML: Maximume-likelihood estimator
MAP: Maximum a posteriori estimator
Mean of the posterior

Median of the posterior

Etc.

Optimal Cue Combination

Humans integrate visual and haptic
information in a statistically
optimal fashion

Marc 0. Ernst* & Martin S. Banks

Vision Science Program/School of Optometry, University of California, Berkeley
94720-2020, USA

Rock & Victor (1964)

View object through distorting lens while
exploring object haptically

\ﬁ

Irv Rock

Visual
capture

Visually and haptically specified shapes differed.
What shape is perceived?

Visual/Haptic Setup

_7 CRT displaying
. 3D image

stereoglasses
line of sight

opaque
surface mirror

virtual visual &
haptic scene

force-feedback
——— devices

(PHANToMs)

Visual Capture ?

Why should vision be the “gold standard”
all other modalities are compared to?

& probability
£ densities i
H N Weights
2 combined fi\ o’
=l haptic — H
""""" v 2 2
RO . o, +0,
T Y .
T 3 size
. 5“ Variance
SVH_WVSV+WHSH =—+—

Visual Capture ?

Why should vision be the “gold standard”
all other modalities are compared to?

probability

2 densities i
H e Weights
combine
] o’
=) haptic visual W = H
.............. v 2 2
o0t oy Y ow oy e, o, +0,
1 ’ r size
o 5“ Variance
1 1
SVH_WVSV+WHSH 5 =72+7
o-VH O-V O-H

11



Visual Capture ?

Why should vision be the “gold standard”
all other modalities are compared to?

probability

= densities Weights
1 7/ \
o 2
‘»; haptic W = O-H
el visual VT 2 2
R TR LTI o,+0,
A T H size
= " Variance
— 1 1
SVH _WVSV +WHSH 5 =72+

2-IFC Task

. Interval
1 sec

no feedback!

Haptic Standard Visual Standard

Trials Perceived

SH 55

Comparison Size (mm)

Haptic Standard Visual Standard

o

visual noise

0%

a
T

Perceived Size

N

Trials Perceived "taller"
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Comparison Size (mm)

Haptic Standard Visual Standard

o

visual noise

Trials Perceived "t
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H 55 v

Comparison Size (mm)

Haptic Standard Visual Standard

100% visual noise

~
2
T

N

Trials Perceived "taller"

|
|
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Comparison Size (mm)
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Haptic Standard Visual Standard

5
2
o
4
17
o
@2
.8
=

S v
Comparison Size (mm)

Individual Differences

1

0 133% noise

0.8 g

0.6 3

0.4

Empirical Visual Weight

0 0.2 0.4 0.6 0.8 1
Predicted Visual Weight

Nonlinear Cue Combination: Causal models

Nonlinear Cue Combination: Causal models

Visual Auditory combination (Ventriloquist effect)

o o)

Modeling: Where do cues come
from?

common

%@ cause
,| 7
A

”D‘*n:u

4

visual auditory
noise noise
N,

Generate

Traditional Bayesian model

N common

A
A=

E/O‘“ cause

Infer

visual auditory
noise noise
N~




What would happen now?

o)

Obviously there may be more than one source.

Mixture model

common independent
%" cause ﬁ,‘»{ causes ®
P ig g =
= s =
| or i
visual auditory visual auditory
noise noise noise noise
ANe—v) >~ AN

p(causal model)

Using Bayes rule:

Independent causes: where is
the auditory stimulus

Best estimate

Common cause: where is
the auditory stimulus

‘ Best estimate

Mean squared error estimate

Best estimate

X = P(O1X i Xaut) X + P(2C|X pia, X)X e

14



Experimental test

LEDs « Target Speakers

0.6 1 Baye

041 Experiment

&

Common cause [%]

Yoke

P

o A .
Button: common cause 15 ’Sm _’TD_O _5(d"’) 15
atial Disparit: e
or two P partyides

Wallace et al. 2005; Hairston et al. 2004

Measured gain

100 Estimated common cause
] T TIi-g
60
40
g !
) Estimated two causes
8 2 5 %

Spatial Disparity {d;g )
— Data
—XKording et al Sato et al, 2007

How can the gain be negative?

perceived perceived

auditory visual e
stimulus stimulus
L]
meanl
L ] d H
i @
H ° L ]
L]
° L]
*

Two e ° » One
acauses H cause
-5 0

Position [deg]

Predicting the variance

o Estimated two causes
g
810
>
<
o
o .
E _ Estlmated common causey _
B i
[
&
0

-15 0 15
Spatial Disparity (deg.)

Worse prediction if we assume model selection

THEORY OF
GAMES AND
STATISTICAL
DECISIONS

Oskar Morgenstern

The Three Elements of SDT

w = {W1 Wy, o, Wm} possible states of the world
A = {81 85,00, ap } possible actions

X = {X1, X2 RN Xn } possible sensory events

X ~f(x;0)

15



The Three Functions of SDT

decision

A 0 X

Fig. 1

The Three Functions of SDT

decision

A 0 X

Fig. 1

The Three Functions of SDT

decision

A 40 X

Action

Fig. 1

The Three Functions of SDT

Goal: select

d: X—-A

decision
A a0x) X
Action
Fig. 1
15
s
05
— 1
~ O .
g» 3 5
T o5 c e
& 7.
ar
w 2,
15 4, 6,
2f o
25
25 2 45 4 05 0 05 1 15
EG( dw,)
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Partial ordering: dominance

25 2 15 A 05 0 05 1 15

EG(dw,)

' Admissible rules

EG(dw,)

Mixture rules

Mixtures of 7 and 8

Mixture rules

rules

All possible mixtures
r rules

All possible admissible

Partial ordering of rules
dX2A

2 s
72—% 5 2 15 1 05 0 05 1 15
EG( dw,)
Aside: SDT
Maximin Criterion
The Maximin
Rule(s) Q
=
S «
&
w
EG( dw,)
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Maximin Criterion Bayesian Decision Theory

m(w)

prior

The Maximin

Rule(s) Q

EG(dw,)

decision
Dr Evil A 700 X

“Cognition”

EG(dw,)

Bayesian Decision Theory
The Bayes Rule(s)

We add a prior probability distribution on
The state of the world and define the
Bayes Risk of each rule.

EBR(d) =Y EG(dw)r(w,)

EG(d,G)

The rule d* that maximizes Bayes Risk (ﬂ@in(s));.\

Is the Bayes Rule (it need not be unique).

EG(d.R)

Bayesian Decision Theory (Continuous Form) Bayesian Decision Theory

L. i Geisler (1989)
Maximize expected Bayes gain Il

EBG(d) = [[G(d(x)w)L(w]x)m(w)dxdw HG (d(x).w) L(W| x)m (w)dxdw

by choice of a decision rule




Bayesian Decision Theory

Geisler (1989)

1L
HG(d (xX)w) L(w|x)m(w)dxdw
N

D?,mﬂ[]““"(y Knill & Richards (1996)
Bayesian
[nference 3 Perception as Bayesian

- Q Inference
TR il
Whitman Richards

A choice

Normative Geisler (1989)

cumsoer

IIEHJEDQIIH?

Descriptive (process) {fﬁé?émm

How test?

Optimal Cue Combination

Humans integrate visual and haptic
information in a statistically
optimal fashion

Marc 0. Ernst* & Martin S. Banks

Vision Science Program/School of Optometry, University of California, Berkeley
94720-2020, USA

Individual Differences

1

0 133% noise

0.8 g

0.6 3

0.4

Empirical Visual Weight

0 0.2 0.4 0.6 0.8 1
Predicted Visual Weight

What is the gain/loss function?

Quadratic loss (least squares)

Process model is weighted
linear combination minimizing
quadratic loss

S= WHSH + WVSV

A weak test of BDT ...

19



Bayesian Decision Theory

Geisler (1989)
L
HG (d(x).w) L(w|x)m(w)dxdw
All that U
really
matters ... Knill & Richards (1996)

\/

loss function?

\/

loss function?

loss function!

Can the visuo-motor system,
presented with arbitrary gain
functions, select decision rules
that maximize expected gain?

Direct manipulation of gain/loss
function

Strong test of BDT

Motor Timing Experiment:

400 450 500 550 600 650 700

Practice phase:

400 450 500 550 600 650 700

20



Practice phase:

400 450 500 550 600 650 700

Practice phase:

400 450 500 550 600 650 700

Practice phase:

400 450 500 550 600 650 700

Practice phase:

400 450 500 550 600 650 700

Calibration SD’s

Subject HT

SD (ms)

35

550 600 650

700

Reach target time (ms)

750

Experiment: Main Task

-15

400 450 500 550 600 650 700

0

21



Experiment: Main Task
How to maximize expected gain?

-15 0
[ EE

400 450 500 550 600 650 700

EG(t)) =ps (t,)G+ps ()R

EG

movement strategy S

f

EG(t)) =ps (t,)G+ps ()R

[G]
w

———

t—

EG(t)) =ps (t,)G+ps ()R

EG(t)) =ps (t,)G+ps ()R

[G]
w

O]
w
0
fo
t4>
Configurations
-15 0
1. N
400 450 500 550 600 650 700
0 -15
2 I

400 450 500 550 600 650 700
-15 0 0

w

400 450 500 550 600 650 700

0 0 -15

N

400 450 500 550 600 650 700
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Expected Gain

HT
646 ms

697 ms
/

5

300 400 500 600 700 800 900 1000
time (ms)

Expected Gain

646 ms
\

-5

300 400 500 600 700 800 900 1000
time (ms)

Expected Gain

HT
646 ms

666 ms —

5

300 400 500 600 700 800 900 1000
time (ms)

HT i
646 ms :
£ et
®© 1
O
el
o}
©
@
o
X
|
699.6 ms
-5 L
300 400 500 600 700 800 900 1000
time (ms)
5 T
1
646 ms :
£
®©
O
K i
5 0 1
@ I
o I
x 1
w 1
1
1
1
-5 :
300 400 500 600 700 800 900 1000
time (ms)
5 v
HT 1
646 ms !
!

Expected Gain

678.2ms

300 400 500 600 700 800 900 1000
time (ms)
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Expected Gain
o

5

300 400 500 600 700 800 900 1000

Expected Gain
o

-5

300 400 500 600 700 800 900 1000

time (ms)

time (ms)

) .
E *
o 700 ° Y
E ° /,
5 >
g 650 ./,/ o
3 i
= ¢ e
® 600 .
o ’
(@] S e

600 650 700

Optimal reach time (ms)

Summary

Subjects chose movements whose
mean time came close to maximizing

expected gain.

No patterned deviations.

ff

Bayesian Decision Theory

G(d(x)w)

Lw|x)r(w) dxdw

ff

G(d(x)w)

Bayesian Decision Theory

Lw|x)r(w) dxdw

B B
— L
L
B
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Conclusions

Gain/loss functions are problems posed by
the environment to the organism

They are an useful as independent
variables in exploring visuo-motor function

Their manipulation allows us to test
performance against ideal in a wide range
of economic games
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