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Integration of cues

• Quick review of depth cues
• Cue combination: Minimum variance
• Cue combination: Bayesian
• Nonlinear cue combination: Causal models
• Statistical decision theory

Distance, depth, and 3D shape
cues

• Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

• Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

• Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

• Binocular cues: convergence, stereopsis/binocular
disparity

• Cue combination

Basic distinctions

• Types of depth cues
– Monocular vs. binocular
– Pictorial vs. movement
– Physiological

• Depth cue information
– What is the information?
– How could one compute depth from it?
– Do we compute depth from it?
– What is learned: ordinal, relative, absolute depth,

depth ambiguities

Definitions

• Distance: Egocentric distance, distance
from the observer to the object

• Depth: Relative distance, e.g., distance
one object is in front of another or in front
of a background

• Surface Orientation: Slant (how much) and
tilt (which way)

• Shape: Intrinsic to an object, independent
of viewpoint

Distance, depth, and 3D shape
cues

• Pictorial depth cues: familiar size, relative size,
[brightness], occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

• Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

• Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

• Binocular cues: convergence, stereopsis/binocular
disparity

Epstein (1965) familiar size
experiment

How far away
is the coin?
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Retinal projection
depends on size
and distance

Monocular depth cues Relative size as a cue to depth

Relative size as a cue to depth Occlusion as a cue to depth

Shading, reflection, and illumination

illumination occlusion reflection shading

Shading – prior of light-from-above
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Shading (flip the photo upside-down) Cast Shadows

Dynamic Cast Shadows Shading and contour

Aerial/Atmospheric Perspective

Retinal projection
depends on size and
distance:

Size in the world
(e.g., in meters) is
proportional to size in
the retinal image (in
degrees) times the
distance to the object

Geometry of Linear Perspective
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Linear perspective Size
constancy

Texture

1. Density
2. Foreshortening
3. Size

Height Within the Image

Distance, depth, and 3D shape
cues

• Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

• Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

• Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

• Binocular cues: convergence, stereopsis/binocular
disparity

Monocular Physiological Cues

• Accommodation – estimate depth based
on state of accommodation (lens shape)
required to bring object into focus

• Blur – objects that are further or closer
than the accommodative distance are
increasingly blur

• Astigmatic blur
• Chromatic aberration
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Distance, depth, and 3D shape
cues

• Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

• Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

• Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

• Binocular cues: convergence, stereopsis/binocular
disparity

Motion Parallax

The Kinetic Depth Effect Dynamic (Kinetic) Occlusion

Distance, depth, and 3D shape
cues

• Pictorial depth cues: familiar size, relative size,
brightness, occlusion, shading and shadows,
aerial/atmospheric perspective, linear perspective,
height within image, texture gradient, contour

• Other static, monocular cues: accommodation, blur,
[astigmatic blur, chromatic aberration]

• Motion cues: motion parallax, kinetic depth effect,
dynamic occlusion

• Binocular cues: convergence, stereopsis/binocular
disparity

Vergence Angle As One
Binocular Source
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Vergence Angle As One
Binocular Source

Vergence Angle As One
Binocular Source

Vergence Angle As One
Binocular Source

Binocular
disparity

Disparity Uncrossed disparity

Zero retinal disparity

Crossed disparity

Disparity
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How to make a random-dot stereogram

Ax A y

B B

Left eye image Right eye image

Depth Cue Combination: Issues

1. How do you put all of the depth cue 
         information together?

2. What do you do when cues disagree?
A little … ?
A lot … ?

3. How much weight should each cue
get?

 errors

Accommodation

When cues disagree … 

6 feet

Relative size

2:1

Linear Perspective

1:1

Information Fusion Problem

Multiple sources of information,
possibly in error, possibly
contradictory

How combine the information into 
a single judgment?

Rashomon
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Optimal Cue Combination: Minimum Variance
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Minimum-Variance Cue Combination
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Minimum-Variance Cue Combination
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Reparamerization
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weight proportional to reliability

reliabilities add

Perturbation Methodology and
Influence Measures

How can we measure the influence of various
cues on perceptual judgments in complex scenes?

Goal: Change the stimulus as little as we possibly
can.
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Perturbation Method

Two Depth Cues

Observer adjusts ...

Example:  Texture and Motion

Perturbation Method

Two Depth Cues

Observer adjusts ...

?
Perturbed
     Cue ….

Perturbation Method

Two Depth Cues

One possibility ...

Perturbed
     Cue ….

Perturbation Method

Two Depth Cues

One possibility ...

Perturbed
     Cue ….

Observer is using only
the perturbed cue.

Perturbation Method

Two Depth Cues

Another possibility ...

Perturbed
     Cue ….
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Perturbation Method

Two Depth Cues

Another possibility ...

Perturbed
     Cue ….

Observer is not using
the perturbed cue at all.

Perturbation Method

Two Depth Cues

A final possibility ...

Perturbed
     Cue ….

Perturbation Method

Two Depth Cues

A final possibility ...

Perturbed
     Cue ….

We will measure the
influence of the cue
on the observer’s setting.

cue

setting

cueI
!

!
=

Change in 
observer’s setting

Perturbation of 
the cue 

Influence of 
the cue

Influence Measures

Texture and Motion: Data Optimal Cue Combination: Bayesian

  

Compute posterior:

p(depth | x
1
,x

2
) =
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2
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Assume conditional independence:

p(depth | x
1
,x

2
) ! p(x

1
| depth)p(x

2
| depth)p(depth)

If likelihoods and prior are Gaussian, so is
posterior, and means and reliabilities are as in
minimum-variance case. Prior acts like a static cue.



11

Optimal Cue Combination: Bayesian

  
p(depth | x

1
,x

2
) ! p(x

1
| depth)p(x

2
| depth)p(depth)

Depending on cost function and priors, choose:

ML: Maximum-likelihood estimator
MAP: Maximum a posteriori estimator
Mean of the posterior
Median of the posterior
Etc.

Optimal Cue Combination

Visually and haptically specified shapes differed.
What shape is perceived?

View object through distorting lens while
exploring object haptically

Irv Rock

Rock & Victor (1964)

Visual
capture

Visual/Haptic Setup

Visual Capture ?

Why should vision be the “gold standard”
all other modalities are compared to?
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Visual Capture ?
Why should vision be the “gold standard”
all other modalities are compared to?
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Visual Capture ?
Why should vision be the “gold standard”
all other modalities are compared to?
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2-IFC Task

Standard Comparison

Visual-Haptic

no feedback!
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Individual Differences

LAS

LAS

RSB

1

RSB

MOE

Em
pi
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 V
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t

MOE

HTE

HTE

JWW

JWW KML

KML

0% noise
133% noise

Predicted Visual Weight
0.80.60.40.20

1

0.8

0.6

0.4

0.2

Nonlinear Cue Combination: Causal models

Visual Auditory combination (Ventriloquist effect)

Nonlinear Cue Combination: Causal models

Modeling: Where do cues come
from?

G
en

er
at

e

Traditional Bayesian model

In
fe

r
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What would happen now?

Obviously there may be more than one source.

Mixture model

or

p(causal model)

• Using Bayes rule:

Independent causes: where is
the auditory stimulus

Best estimate

Common cause: where is
the auditory stimulus

Best estimate

Mean squared error estimate

Best estimate
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Experimental test

Wallace et al. 2005; Hairston et al. 2004

Button: common cause
or two

Measured gain

Data
Kording et al Sato et al, 2007

How can the gain be negative?

perceived
auditory
stimulus

perceived
visual

stimulus

Predicting the variance

Worse prediction if we assume model selection

Spatial Disparity (deg.)

St
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0-15 15

David Blackwell

John von Neumann

Oskar Morgenstern 1954

Abraham Wald

Statistical Decision Theory
The Three Elements of SDT
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Fig. 1
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1

8

2

3

4
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6

7

Partial ordering:  dominance
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Admissible rules

EG( d,w1 )

E
G

( d
,w

2 
)

1

8

2

3

4

5

6

7

Mixture rules

Mixtures of 7 and 8
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Mixture rules

All possible mixtures
rules

All possible admissible
rules5

7

Aside: SDT
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Partial ordering of rules
d: X  A

The Maximin
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The Maximin
Rule(s)

EG( d,w1 )

E
G

( d
,w

2 
)

Maximin Criterion
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Bayesian Decision Theory
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Bayesian Decision Theory

We add a prior probability distribution on
The state of the world and define the 
Bayes Risk of each rule.

The rule d* that maximizes Bayes Risk
Is the Bayes Rule (it need not be unique).
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Bayesian Decision Theory (Continuous Form)
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Maximize expected Bayes gain 

by choice of a decision rule  

:d X A!

Bayesian Decision Theory

( )( ) ( ) ( ), |G d x w L w x w dxdw!""

Geisler (1989)
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Bayesian Decision Theory

( )( ) ( ) ( ), |G d x w L w x w dxdw!""

Geisler (1989)

Knill & Richards (1996)

Perception as Bayesian
Inference

A choice

Normative

Descriptive (process)

How test? 

Geisler (1989)

Optimal Cue Combination Individual Differences
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What is the gain/loss function?

Quadratic loss (least squares)

Process model is weighted
linear combination minimizing
quadratic loss

A weak test of BDT …
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Bayesian Decision Theory

( )( ) ( ) ( ), |G d x w L w x w dxdw!""

Geisler (1989)

Knill & Richards (1996)

All that
really
matters …

loss function?

loss function?

loss function!

Can the visuo-motor system,
presented with arbitrary gain
functions,  select decision rules
that maximize expected gain?

Direct manipulation of gain/loss
function

Strong test of BDT

400    450    500    550    600    650    700

Motor Timing Experiment: 

Time bar 

Target 

400    450    500    550    600    650    700

Practice phase:
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400    450    500    550    600    650    700

Produce a movement to target
Of duration 650 msec

Practice phase:

400    450    500    550    600    650    700

Practice phase:

400    450    500    550    600    650    700

Try again!

Practice phase:

400    450    500    550    600    650    700

Practice phase:

Better!

 

Calibration SD’s

Reach target time (ms)

SD
 (m

s)

Subject HT

400    450    500    550    600    650    700

Make money ….

-15 +5 0

Experiment: Main Task
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400    450    500    550    600    650    700

-15 +5 0

How to maximize expected gain?

Experiment: Main Task

G L

0t

t

movement strategy S
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EG t p t G p t R= +

G L

0t

t

0

E
G

( ) ( ) ( )0 0 0G R
EG t p t G p t R= +
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Note SD
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optimum
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E
G

( ) ( ) ( )0 0 0G R
EG t p t G p t R= +

400    450    500    550    600    650    700

-15 +5 0

400    450    500    550    600    650    700

-15+50

400    450    500    550    600    650    700

-15 +5 0

400    450    500    550    600    650    700

-15+50

0

0

Configurations

1.

2.

3.

4.
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time (ms)
300 400 500 600 700 800 900 1000

5
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5
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646 ms
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647.4 ms

Optimal reach time (ms)

O
bs

er
ve

d 
re

ac
h 

tim
e 

(m
s)

600

650

700

600 650 700

Summary

Subjects chose movements whose
mean time came close to maximizing 
expected gain.
No patterned deviations.

Bayesian Decision Theory

( )( ) ( ) ( ), |G d x w L w x w dxdw!""

Bayesian Decision Theory

( )( ) ( ) ( ), |G d x w L w x w dxdw!""
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Conclusions

Gain/loss functions are problems posed by
the environment to the organism

They are an useful as independent
variables in exploring visuo-motor function

Their manipulation allows us to test
performance against ideal in a wide range
of economic games


