

Flattening the brain

What is a visual area?

- PhACT:
 Physiology
 Architecture
- Connections
- Topography

Physiology Example: direction selectivity in V1

Functional specialization

Match each cortical area to its corresponding function:

 V1
 Motion

 V2
 Stereo

 V3
 Color

 V3A
 Texture

V3B Segmentation, grouping V4 Recognition

 V5
 Attention

 V7
 Working memory

 L01
 Mental imagery

 IP51
 Decision-making

 IP52
 Sensorimotor integration

Etc. Etc.

Cortical area MT is specialized for visual motion perception

- Neurons in MT are selective for motion direction.
- Neural responses in MT are correlated with the perception of motion.
- \bullet Damage to MT or temporary inactivation ${\bf causes}$ deficits in visual motion perception.
- \bullet Electrical stimulation in MT ${\bf causes}$ changes in visual motion perception.
- Computational **theory** quantitatively explains both the responses of MT neurons and the perception of visual motion.
- Well-defined **pathway** of brain areas (cascade of neural computations) underlying motion specialization in MT.

Neurons in MT are selective for motion direction

Damage to MT causes deficits in motion perception (Akinetopsia: motion blindness)

Beware of circular reasoning in brain mapping

- Hypothesize that there is a particular visual/cognitive process that is localized to a functionally specialized brain area.
- Design an experiment with two stimuli/tasks, one of which you believe imposes a greater demands on that cognitive process.
- Run the experiment and find sure enough that there is a brain area that responds more strongly during trials with high demand on that visual/cognitive process then low demand trials.

What can you conclude from this?

Is MT specialized for only visual motion perception?

- Neurons in MT are also selective for binocular disparity.
- \bullet Neural responses in MT are also correlated with the perception of depth.
- \bullet Motion discrimination performance mostly recovers following carefully circumscribed lesions to MT in monkeys.
- Electrical stimulation in MT causes changes in stereo depth perception.

Even so... computational theory quantitatively explains the responses of MT neurons.