Visual area MT responds to local motion

Visual area MST responds to optic flow

Visual area STS responds to biological motion

Macaque visual areas
Flattening the brain

What is a visual area?

PhACT:
- Physiology
- Architecture
- Connections
- Topography

Physiology

Example: direction selectivity in V1

Architecture

Example: cytochrome oxidase staining in human visual cortex
Connections

Example: connections in monkey visual cortex

Topography

Each visual brain area contains a map of the visual world and performs a different function.

Topography (human V1)

Measuring retinotopic maps

Radial component

Angular component

Engel et al (1994)
Retinotopy: radial component

Flattening the human brain

Cortical segmentation & flattening

Retinotopy: angular component
Visual cortical areas

LO1 and LO2: Larsson & Heeger, J Neurosci (2006)

IPS1 and IPS2: Schluppeck, Glimcher, & Heeger, J Neurophysiol (2005)

Functional specialization

Match each cortical area to its corresponding function:

- **V1**: Motion
- **V2**: Shape
- **V3**: Color
- **V3A**: Texture
- **V3B**: Segmentation, grouping
- **V4**: Recognition
- **V5**: Attention
- **V7**: Working memory
- **LO1**: Mental imagery
- **IPS1**: Decision-making
- **IPS2**: Sensorimotor integration
- **Etc.**: Etc.

Cortical area MT is specialized for visual motion perception

- Neurons in MT are selective for motion direction.
- Neural responses in MT are correlated with the perception of motion.
- Damage to MT or temporary inactivation causes deficits in visual motion perception.
- Electrical stimulation in MT causes changes in visual motion perception.
- Computational theory quantitatively explains both the responses of MT neurons and the perception of visual motion.
- Well-defined pathway of brain areas (cascade of neural computations) underlying motion specialization in MT.

Neurons in MT are selective for motion direction
MT responses correlated with motion perception

Damage to MT causes deficits in motion perception (Akнетопия: motion blindness)

Microstimulation in MT changes motion perception

Human MT
Beware of circular reasoning in brain mapping

1. Hypothesize that there is a particular visual/cognitive process that is localized to a functionally specialized brain area.
2. Design an experiment with two stimuli/tasks, one of which you believe imposes a greater demands on that cognitive process.
3. Run the experiment and find sure enough that there is a brain area that responds more strongly during trials with high demand on that visual/cognitive process than low demand trials.

What can you conclude from this?

Topography in human MT

Direction-selective adaptation in human MT

Direction-selectivity across visual areas
Is MT specialized for only visual motion perception?

- Neurons in MT are also selective for binocular disparity.
- Neural responses in MT are also correlated with the perception of depth.
- Motion discrimination performance mostly recovers following carefully circumscribed lesions to MT in monkeys.
- Electrical stimulation in MT causes changes in stereo depth perception.

Even so, computational theory quantitatively explains the responses of MT neurons.