
 Introduction

• Gain control is ubiquitous in 
  the nervous system

• We seek an automated unbiased 
 stimulus/analysis methodology for 
 characterizing a neuron with gain
 control

Conclusions

• 
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all stimuli
stimuli eliciting one spike 
stimuli eliciting two spikes
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Assume a divisive gain control model [e.g., 4] of the form:

Need to recover :
  • numerator kernel
  • divisive gain control kernels
  • divisive weights
  • divisive constant  

Direct Maximum Likelihood (ML) is impractical!

Proposed solution:

Step 1: Under simple assumptions (gain control signal 
symmetric about     ) STA produces an unbiased estimate
of numerator kernel

Step 2: Eigenvector analysis of spike-triggered covariance (STC)
reveals suppressive axes:

Step 3: ML can be used to recover divisive weights 
and constant:

Model numerator kernel:

Model divisive kernels:

Step 2: Smallest STC eigenvalues correspond to suppressive axes:

  Suppressive kernels are mixed together, but span correct subspace:

Estimated 
suppressive kernel

Arbitrary kernel

 Step 3: Divisive weights and constant determined by ML.

 Relative entropy between true and estimated spike probabilities:

• Salamander ganglion cell data provided by D Chander and 
  EJ Chichilnisky [5]

• Stimuli are full-field flickering white noise

• Stimuli are not spherically distributed [80,000 time samples, 
   binary noise]. To avoid bias we discard low-variance axes
   and sphere remaining axes

Step 1: STA estimated kernel:

Step 2: Smallest STC eigenvalues correspond to suppressive axes:

Arbitrary kernel

Estimated 
suppressive kernel

All estimated suppressive kernels:
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Assume a steady state model for
spiking:

 
   
• monotonic function  
 

K

Step 1: Spike-triggered average
(STA) of stimuli can be used to 
recover linear kernel
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Step 2: Projecting stimuli onto linear
kernel allows recovery of monotonic
function  [2]

Step 1: STA estimated kernel:  

Accuracy depends on:
1. Number of stimulus samples
2. Stimulus dimensionality
3. Number of divisive kernels
    and their divisive strength
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Suppressive versus non-suppressive axes:

Spike-triggered covariance
can be used to characterize 
divisive gain control

• Analysis on physiological data 
  reveals meaningful suppressive 
  axes

• Interesting issue: STA kernels 
  vary with contrast [5]. We 
  believe this is a bias due to
  the gain control signal. We are
  currently working on analysis
  techniques to characterize this 
  bias
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Analogous solution for linear
receptive field [1,2,3]:

Axis of maximally
reduced response 
(corresponding to 
smallest eigenvalue)

all stimuli
stimuli eliciting one spike 
stimuli eliciting two spikes
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