Maximum differentiation competition: A methodology for comparing quantitative models of perceptual discriminabilityZ Wang and E P SimoncelliPublished in 5th Annual Meeting, Vision Sciences Society, May 2005.© IEEE Signal Processing Society DOI: 10.1167/5.8.230 This paper has been superseded by:
|
Here we describe a methodology, Maximum Differentiation Competition, for efficient comparison of two such models. Instead of being pre-selected, the stimuli are synthesized to optimally distinguish the models. We first synthesize a pair of stimuli that maximize/minimize one model while holding the other fixed. We then repeat this procedure, but with the roles of the two models reversed. Subjective testing on pairs of such synthesized stimuli provides a strong indication of the relative strengths and weaknesses of the two models. Specifically, if a pair of stimuli with one model fixed but the other maximized/minimized are very different in terms of subjective discriminability, then the first (fixed) model must be failing to capture some important aspect of discriminability that is captured by the second model. Careful study of the stimuli may, in turn, suggest potential ways to improve a model or to combine aspects of multiple models.
To demonstrate the idea, we apply the methodology to several perceptual image quality measures. A constrained gradient ascent/descent algorithm is used to search for the optimal stimuli in the space of all images. We also demonstrate how these synthesized stimuli lead us to improve an existing model: the structural similarity index [Wang, Bovik, Sheikh, Simoncelli, IEEE Trans Im Proc 13(4), 2004].