
ARTICLE

Multiple timescales of normalized value coding
underlie adaptive choice behavior
Jan Zimmermann1, Paul W. Glimcher1,2 & Kenway Louie 1,2

Adaptation is a fundamental process crucial for the efficient coding of sensory information.

Recent evidence suggests that similar coding principles operate in decision-related brain

areas, where neural value coding adapts to recent reward history. However, the circuit

mechanism for value adaptation is unknown, and the link between changes in adaptive value

coding and choice behavior is unclear. Here we show that choice behavior in nonhuman

primates varies with the statistics of recent rewards. Consistent with efficient coding theory,

decision-making shows increased choice sensitivity in lower variance reward environments.

Both the average adaptation effect and across-session variability are explained by a novel

multiple timescale dynamical model of value representation implementing divisive normal-

ization. The model predicts empirical variance-driven changes in behavior despite having no

explicit knowledge of environmental statistics, suggesting that distributional characteristics

can be captured by dynamic model architectures. These findings highlight the importance of

treating decision-making as a dynamic process and the role of normalization as a unifying

computation for contextual phenomena in choice.
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Behaving organisms face complex and constantly changing
environments, requiring the processing of vast amounts of
information. However, information capacity is limited in

neural systems, which face intrinsic physiological constraints such
as finite numbers of neurons and bounded dynamic ranges in
spiking activity. How such intrinsically limited neural systems
represent near-limitless quantities of information has long been a
fundamental question in neuroscience1–3. The efficient coding
hypothesis proposes that neural systems exploit statistical reg-
ularities within their inputs, reducing redundancy to maximize
the information carried in neural responses1. Information-
maximizing coding strategies for capacity-limited systems have
been extensively documented in sensory processing2,4–8, but
whether these principles extend to higher-order processes like
decision-making is not fully known.

A key element in the efficient coding of sensory information is
the contextual modulation of neural responses7,9,10. Under con-
textual modulation, responses to a stimulus depend on both the
stimulus and the surrounding sensory context. Functionally,
context effects can be grouped into two broad domains, driven by
either spatial context or temporal context. In spatial contextual
modulation, neurons encode stimulus-specific sensory informa-
tion relative to surrounding contemporaneous sensory
information10,11. In temporal contextual modulation, neurons
adjust their sensitivity in response to recent sensory history to
encode information relative to recent stimuli12–15. Such adapta-
tion to stimulus history is a widespread feature of sensory phy-
siology and perception. Critically, both spatial and temporal
contextual modulation are thought to contribute to the efficient
coding of sensory information, allowing the brain to minimize
redundancy by accounting for spatial and temporal regularities in
the sensory environment2,7,10.

In contrast to sensory systems, less is known about how con-
textual modulation and efficient coding principles operate in the
neural systems underlying economic decision-making. While
context-dependent preferences have a prominent history in the
behavioral choice literature16–18, the responsible neural mechan-
isms have not yet been identified. Recent work suggests that spatial
contextual modulation in value coding plays an important role in
value representation and spatial choice effects. Neurons in monkey
parietal and premotor regions represent the value of actions in a
relative manner, normalizing firing rates to the spatial context
defined by the value of the current choice set19–21. Similar relative
value coding has been observed in human parietal cortex using
electroencephalography22 and functional magnetic resonance
imaging23. This relative value coding is believed to be mediated by
divisive normalization, a canonical neural computation prevalent
in sensory brain areas. Normalization thus provides a unifying
computational mechanism for contextual modulation in both
sensory and decision processing. Importantly, normalized value
coding also explains spatial contextual effects in value-driven
decision-making23,24, linking contextual modulation in neural
coding to context-dependent choice.

While temporal context also controls value-coding activity, the
underlying neural mechanism is less well understood and the link
between mechanism and behavior remains unclear. Adaptation in
value coding has, however, been observed in a number of brain
regions involved in reward learning and value representation25–28.
In the orbitofrontal cortex (OFC), an area implicated in the
representation of option and outcome values25,29–31, neurons
represent value information independent of the current choice
context32 but dependent on the statistical structure of recent
rewards. OFC value coding adapts to the range or variance of
recent rewards26,33, with less variable reward environments gen-
erating stronger value coding. Similar adaptive responses are
exhibited by midbrain dopamine neurons28, suggesting that

adaptive value coding is a general feature of reward-processing in
the brain. Such adaptation dynamically reallocates neuronal cod-
ing sensitivity to represent the most likely rewards, as determined
by the recent reward history. A common theoretical assumption is
that this sensitivity retuning should improve discriminability at
the behavioral level; however, despite ample evidence for adap-
tation effects in sensory neurons, empirical evidence for
adaptation-induced changes in perceptual discriminability is var-
ied, subtle, and conflicting13,34,35. In decision-making, most pre-
vious experiments demonstrating adaptive value coding have not
examined choice behavior26,33 and the relationship between
adaptation in neural coding and changes in empirical decision-
making is unclear. While recent evidence suggests that choice
behavior can vary with the mean and range of rewards36–38 as well
as the tendency to repeat choices39 (hysteresis), little is known
about the neural mechanisms responsible for adaptive changes in
value coding and their potential role in choice behavior outside of
an explicit learning context40,41. Thus a critical open question is
whether and how value-based decision-making adapts to time-
varying changes in the statistics of the reward environment.

Here we propose a general computational mechanism for
adaptive value coding based on the principles of dynamic divisive
normalization and examine the ability of this model to predict
adapting choice behavior. Normalization is a canonical compu-
tational mechanism in which the activity of a neuron is divided by
a summed common factor, usually comprising the summed
activity of a neighboring pool of neurons3. Given the ubiquity of
normalization in sensory modulation and its proposed role in
economic spatial context effects, we hypothesize that normal-
ization, as implemented in dynamic networks, also mediates
temporal context effects in value coding and choice behavior. To
test our hypothesis, we extend the normalization model to a fully
dynamic form capable of capturing the effects of past reward
information. This extended mechanism implements a dynamic,
cascaded form of normalization42 that can bridge spatial and
temporal context effects in a generalized framework.

To test this proposed mechanism, we examine nonhuman
primate choice behavior in environments with varying reward
statistics. These findings show for the first time that economic
choice behavior adapts to the local reward environment in a
manner consistent with efficient coding theory. Furthermore,
both the extent and across-session variability in adaptive choice
behavior is captured by the dynamic normalization model,
without any explicit knowledge of the underlying reward statis-
tics. These findings indicate that normalization can account for
both spatial as well as temporal context effects in choice and
suggest that the underlying biophysical mechanism, even though
unknown at a circuit level, may serve a common purpose: effi-
cient coding of value representations.

Results
Dynamic normalization model of value adaptation. To examine
the neural basis of temporal context effects in choice, we imple-
mented a dynamic divisive normalization model incorporating
multiple timescales of integration. Divisive normalization is a
neural computation widely observed in both early sensory coding
and higher-order cognitive processes including visual attention,
multi-sensory integration, and decision-making3,24,43–45. The
characteristic feature of normalization is a divisive scaling, in
which the input-driven response of a neuron is divided by the
summed activity of a large pool of other neurons. This divisive
scaling introduces an intrinsic relativity in neural coding and is
thought to play a key role in contextual modulation3,46. If the
divisive term includes information about immediate past inputs
or neuronal responses, normalization has been demonstrated to
characterize key features of adaptation in sensory processing5,47.
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Our dynamic model simulates the time-evolving activity of
value-coding neurons using a set of normalization-based
differential equations. In decision-making, dynamic normal-
ization models can reproduce temporal aspects of normalized
value coding seen in the monkey lateral intraparietal (LIP) area,
including phasic responses at choice onset, time-varying value
coding, and a delayed onset of contextual information represen-
tation48. This model features paired excitatory (rate coding, R)
and inhibitory (gain control, G) neurons for each choice option,
with divisive normalization implemented via recurrent inhibition:
each gain control neuron sums network excitatory activity and
inhibits its paired output neuron via divisive scaling. In this
model, evolving neural activity is governed by a set of N pairs of
differential equations:

τ
dGi

dt
¼ �Gi þ

XN

j¼1

ωijRj ð1Þ

τ
dRi

dt
¼ �Ri þ

Vi

1þ Gi
ð2Þ

where i= 1,..,N are individual choice options, Vi is the value of
option i, Ri and Gi are the activity of the excitatory and inhibitory
neurons representing option i, respectively, the parameters ωij

weight the input Rj to gain neuron Gi, and the timescale τ governs
the timescale of system dynamics. Together, these equations
capture the cross-option normalization that underlies spatial
context effects on value coding as well as their underlying
dynamics. Note that these dynamics are intra-trial dynamics
(when τ is short as in our original model), describing activity

changes in a decision-related brain area over the course of a single
choice. However, these fast dynamics are unable to capture
processes such as adaptation that occurs over multiple trials,
necessitating an extension to the previous model.

In order to capture longer timescale phenomena while
retaining the ability of the model to capture fast firing rate
dynamics, such as those in area LIP, we extended the dynamic
normalization model with an additional circuit capturing inter-
trial (slower) dynamics. Inter-trial dynamics are required because
empirically observed adaptive value coding is sensitive to
distributional parameters like the mean, range, and standard
deviation of past rewards25,26,33, which can only be estimated
across multiple trials. Our model utilizes the same general circuit
architecture as the previously published model48 but incorporates
cascaded circuits operating at long and short timescales,
generating both slow and fast dynamics (Fig. 1a). As in the
previous model, each fast network gain control neuron (Gi

F)
computes a weighted sum of excitatory output neurons and
inhibits its paired output neuron via divisive inhibition:

τF
dGF

i

dt
¼ �GF

i þ
XN

j¼1

ωijR
F
j þ

XN

k¼1

αikR
S
k ð3Þ

τF
dRF

i

dt
¼ �RF

i þ
Vi

1þ GF
i

ð4Þ

However, in addition to fast circuit excitatory neurons (RF),
fast circuit inhibitory neurons also receive input from excitatory
neurons (RS) in an upstream slow circuit. Like the fast circuit, the
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Fig. 1 Cascaded normalization model and example model behavior. a Cascaded dynamic normalization model. Circuits are arranged into separate slow
(bottom) and fast (top) subcircuits. Model units are either excitatory (R) or inhibitory (G); arrows depict excitatory and dots inhibitory connections. b–e
The network behavior using a simple input structure emulating consecutive trials over time (e); panels on the right show an expanded view of a small time
interval (dashed boxes). b Dynamic activity of the fast circuit excitatory units. These units show fast transients and subsequent sustained responses to
value input in single trials. c Dynamic activity of fast (pink) and slow (teal) circuit inhibitory units. Note that, in the model architecture, inhibitory neurons
within a subcircuit (fast or slow) act as a single pool and are plotted together. d Dynamic activity of slow circuit excitatory units. Over trials, slower
adaptation-like effects within the slow circuit are propagated to the fast subcircuit. Contrasting the first and second half of the stimulation demonstrates
the profound differences in value coding elicited by the temporal context despite having the exact same input structure (b). e Simulated value inputs. In this
simulation, V2 was kept constant while V1 was changed across blocks; values were turned on during each trial and set to zero between trials
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slow circuit comprises excitatory output neurons and inhibitory
gain control neurons mediating a recurrent divisive inhibition but
in this case at a much slower timescale (longer time constant):

τS
dGS

i

dt
¼ �GS

i þ
XN

j¼1

βijR
S
j ð5Þ

τS
dRS

i

dt
¼ �RS

i þ
Vi

1þ GS
i

ð6Þ

Together, this system of differential equations (Eqs. 3–6)
describes how the neural activity of each unit in the circuit
changes over time as a function of activity levels and option
values Vi. Both the fast and slow circuits utilize the same internal
architecture: feedforward value inputs, lateral connectivity within
a circuit, and recurrent inhibition. As in previous work48, the fast
circuit operates at a short timescale (τF) to capture intra-trial
dynamics, modeling value-coding activity in a brain area
implementing choice. In contrast, the slow circuit operates at a
long timescale (τS) to capture inter-trial dynamics, modeling
value responses that integrate responses over multiple trials and
rewards. Critically, slow circuit activity modulates fast circuit
activity via inputs to fast circuit gain control neurons, resulting in
cascaded circuits operating at different timescales that influ-
ence both value coding and choice behavior via the output of the
fast network.

Example model behavior. To demonstrate the multiple timescale
characteristics of the cascaded model, we show model behavior in
a simulation with values that change over long timescales (Fig. 1).
In this simulation, we examined a two option network receiving
information about two choice option values in individual trials.
Within a block, the two option values were held constant; across
blocks, the value of one option (V1) stepped through 3 values (20,
40, 60 arbitrary units) twice, while the value of the other option
(V2) was constant (Fig. 1e). To signify individual trials, value
inputs were turned on for a constant amount of time and swit-
ched off between trials. Time constants were set to 1 for the fast
and 1000 for the slow subnetworks in arbitrary units of time.

Two important model characteristics are evident in the faster
dynamic subcircuit of the network (Fig. 1b), which represents
neurons in a value-coding output area (i.e., decision-related area).
First, the fast dynamics in response to a single value input reflect
previously studied dynamic normalization models and closely
resemble aspects of value modulation in LIP area neurons48.
Value-coding RF neurons in the fast network exhibit peak
transients and subsequent steady-state plateaus during option
presentation. Second, longer timescale changes in the system
produce a change in the pattern of fast activity over time, despite
constant patterns of input. This longer timescale adaptation is
evident in changes in RF activity within each block. These
adaptive changes in the fast network are driven by longer
timescale changes in the slow network (Fig. 1c,d), not by changes
in the inputs. Both excitatory (RS) and inhibitory (GS) units in the
slow network operate at a longer timescale and integrate value
information over multiple trials. Because inhibitory units in the
fast network receive inputs from the slow network, their activity
also exhibits longer timescale dynamics. This network architec-
ture thus incorporates an interaction between the two dynamic
components of the slow and the fast network.

These dynamics imply that the model can integrate informa-
tion over multiple trials and thus reflect the statistics of the
reward environment. In this model, we quantify choice formally
by comparing the RF value-coding activity in the fast network for

each of the options under consideration48. In the simulation
shown in Fig. 1, RF activity representing the values of the two
individual options changes over trials. Even with constant value
inputs, the difference between these activities governing model
choice also changes on a similar timescale (Fig. 1b, inset). Given
these predicted neural and behavioral signatures of adaptation, we
next examined whether the cascaded dynamic normalization
model captures temporal context effects in empirical monkey
choice behavior.

Behavioral results. To examine how temporal reward context
affects empirical decision-making, we quantified choice behavior
in monkeys performing a delayed two alternative forced choice
task (Fig. 2a). In each trial, monkeys chose between options
delivering different amounts and types of juice reward. Trials
were organized into one of the two different kinds of blocks
(narrow, wide; counterbalanced across sessions). Both blocks
included identical test trials, which paired a fixed quantity of one
juice type with varying quantities of a second juice type (Fig. 2b).
The two juice types used were held constant for each animal.
Within each block, these test trials always quantified choice
behavior across a fixed set of value differences. In addition to
these fixed test trials, each block included adapter trials, which
paired varying quantities of the second juice type. Critically, the
statistics of the adapter juice distribution differed between blocks
of trials, exhibiting lower variance in the narrow block and higher
variance in the wide block (while preserving a common mean). In
each block, test trials and adapter trials were randomly inter-
leaved; therefore, the statistical distribution of all presented
rewards differed between blocks. This design allowed us to
examine how choice behavior in test trials—which were identical
between blocks—depended on the background reward statistics
controlled by adapter trials.

We first examined how average choice behavior varied between
blocks with different reward statistics. In sensory processing, the
efficient coding hypothesis postulates a straightforward relation-
ship between sensory statistics and neural stimulus coding1,7.
Given a fixed dynamic range, neurons adapt to wider stimulus
distributions with shallower firing rate response curves, a
phenomenon that has been observed in value-coding areas of
the brain26. We hypothesized that—if value-coding neurons
adapt to narrow and wide reward distributions by changing the
slope of their firing rate response curves—choice behavior for a
fixed set of value differences should exhibit steeper choice curves
in narrow reward contexts (Fig. 2c). For each session, we fit
separate sigmoid functions to test trial choice data from the
narrow and wide blocks (see Methods). In both monkeys, we
observed a significant (Monkey H: t(38)= 2.638, p= 0.012;
Monkey B: t(29)= 2.199, p= 0.036; t test two tailed) change in
average choice slope between the two adaptation conditions; this
difference was also significant when tested in a non-parametric
manner (p < 0.05; permutation testing). Choice slopes were on
average higher in the narrow (smaller variance) condition
compared to the wide (larger variance) condition (Fig. 3b).
Notably, this change in choice stochasticity was not accompanied
by a change in relative juice preference: neither animal exhibited a
significant change between conditions in choice curve indiffer-
ence points, the magnitudes at which juices are chosen with equal
probability (Monkey H, t(38)= 0.190, p= 0.850; Monkey B: t
(29)= 0.603, p= 0.551; t test two tailed). We also found no
significant difference in the root mean square error of the choice
curve fits across block conditions (Monkey B: t(29)= 1.405, p=
0.170, Monkey H: t(38)= 0.652, p= 0.518; t test two tailed); thus
differences in model fit quality do not account for the adaptation-
related difference in choice performance. This block-dependent
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difference in choice behavior demonstrates the influence of
distributional context on choice stochasticity. Consistent with the
predictions of efficient coding theory, adaptation to a larger
distribution of value options leads to decreased choice perfor-
mance on fixed test trial choices.

In addition to the significant average change in choice
performance, adaptation effects demonstrated a large variability
across individual sessions, each of which presented the adapters
and test trials in a different random order. As evident in example
daily sessions (Fig. 3a) and across all data (Fig. 3b), slope
differences exhibited a range of adaptation effects: while most
session differences occurred in the expected direction (narrow >
wide), a minority exhibited either no difference (narrow∼wide)
or differences in the opposite direction (narrow < wide). This
variability was unrelated to either varying indifference points or
other potentially confounding behavioral measures. There was no
significant relationship between narrow–wide slope differences
and indifference point differences across sessions (Monkey H, r
(38)= 0.09, p= 0.56; Monkey B, r(29)= 0.20, p= 0.30; Pearson
correlation). Furthermore, a simple regression analysis showed no
relationship between narrow–wide choice slope difference and
various session variables (percentage of correct trials, experiment
time, average saccade response time, mean received reward,
standard deviation of received reward) across sessions (Monkey
H, F(38)= 1.68, p= 0.16; Monkey B, F(29)= 1.16, p= 0.35;
multiple linear regression). Thus the aggregate behavioral
adaptation effect, which matches the prediction of efficient
coding theory, masks a considerable variability in the effects of
reward statistics on session-level data. Notably, because experi-
mental reward distributions were identical across sessions, this
session-by-session variability cannot be explained by the effect of
average reward statistics. However, such variability might reflect
the effect of more local reward statistics (i.e., the specific order in
which adapters were presented), a possibility we next examined
with the cascaded normalization model.

Modelling adapting choice behavior. To test the ability of the
cascaded model to explain adapting choice behavior, we

examined whether it could reproduce two key features of the
empirical data: (1) average choice performance across blocks, and
(2) session-by-session variability in the extent of adaptation.
Neither of these effects can be captured by static normalization
models that ignore the trial history. To assess model performance,
for each session the model was fed the identical trial sequence
experienced by the monkey, trial-by-trial predicted choices were
identified, and narrow and wide block choice curves were
quantified. The inputs to the model thus comprised the exact
experimental sequence of option values presented to a monkey,
delivered with the same timing as in experimental sessions.
Because the dynamic model utilizes differential equations, which
evaluate the activity of a given unit as a function of both input
and the activity of other units at each time step, both the mag-
nitude and timing of value inputs control model activity and
influence predicted choice behavior. In this approach, the tem-
poral sequence of potential rewards encountered by the animals—
but not the explicit underlying reward statistics—is available to
the model; in order to adapt to block-wise reward statistics, the
model must effectively extract this information from the dynamic
sequence of trial values.

For each individual behavioral session, we determined
predicted model choice on each trial and constructed probabilistic
choice curves for the two block conditions (narrow, wide). As in
our analysis of the monkey behavior, the difference in block-
specific choice curves served as a measure of session-by-session
adaptation in model-predicted choice behavior (Fig. 4a). Note
that the dynamic model was not fit in a traditional sense to the
choice data; the only free parameters in the model are the time
constants τS and τF. Only the ratio of these slow and fast time
constants affects the behavior of the model. Rather than optimize
parameter values, we examined model predictions at different
fixed τS and τF ratios. Given that previous work suggests that fast
normalization dynamics operate with a τF ~ 100 ms48, we assessed
model predictions with τ ratios (τS/τF) ranging from 100 to 2500
consistent with a τS= 10–250 s. At these slow timescales, the
model incorporates information from several to many trials in the
past (average trial length= 2.5 s).
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We found that the cascaded dynamic normalization model
captured both the mean adaptation effect and its session-by-
session variability. Averaged across sessions (Fig. 4b), model
predictions in both monkeys exhibit steeper choice curves in
narrow versus wide block conditions (p < 0.05; permutation
testing). The direction of model-predicted adaptation effects do
not significantly differ from that observed in the behavioral data
(monkey B: χ2= 1.36, monkey H: χ2= 0.35), indicating that the
model and the monkeys exhibit analogous average responses to
background reward statistics.

More importantly, as in the empirical data, model behavior
exhibited across-session variability in adaptation. Figure 4a shows
two example model-predicted choice curves in each monkey for
the same sessions displayed in Fig. 3 (Monkey B: τS= 75 s;
Monkey H: τS= 60 s). Across all sessions (Fig. 4b), model-
predicted adaptation effects qualitatively matched observed
adaptation effects, with slope differences consistent with the
average effect (narrow > wide) and in the opposite direction
(narrow < wide). The example choice curves and the distributions
of slope differences indicate that model and animal behavior
exhibit a similar pattern of across-session variability in adapta-
tion. Moreover, the extent of adaptation in monkey and model
behavior was significantly correlated across sessions (Fig. 5a;
Monkey B: r(29)= 0.453, p= 0.012; Monkey H: r(38)= 0.314, p
= 0.046; Pearson correlation). This correlation shows that the
dynamic normalization model captures session-specific changes
to the extent of adaptation: sessions that exhibited stronger
adaptation in observed behavior generated stronger adaptation in
model choice.

In order to differentially respond to distributional reward
statistics, our normalization model relies on a slow circuit that
integrates value information over multiple trials. To examine how
model performance depends on the balance of slow (τS) and fast
(τF) circuit timescales, we performed independent simulations of
our model using a range of different τ ratio values (Fig. 5b).
Model-predicted choice slope differences at each τ ratio were
compared to empirical observations using correlational analyses,
as described above. Significant correlations between model
predictions and monkey behavior were only observed at
intermediate τ ratios, corresponding to τS values of ~50–80 s in
both animals (assuming τF= 100ms, based on previous work).
These intermediate slow circuit integration times suggest that
model dynamics must match the timescale of the relevant
environmental statistics: at very fast integration times, the model
is unable to capture across-trial reward statistics; at very slow
integration times, the model is insensitive to across-block changes
in reward statistics.

Finally, we examined which aspects of the reward environment
contribute to model performance. In the primary analysis above,
input to the dynamic normalization model comprised the exact
sequence and timing of option values presented to the monkey in
each session. To determine the contribution of reward sequence
and timing to model performance, we examined model predic-
tions with shuffled versions of the empirical data (see Methods
and Fig. 6a). These shuffled data retained the choices associated
with each presentation of options but varied either the sequence
of presented options or their timing information. In the
magnitude permutation, we shuffled the order of presented trials
but retained the temporal characteristics of each session (trial and
inter-trial interval (ITI) durations). In the ITI permutation, we
shuffled the timing information but retained the sequence of
presented trials. For each shuffled data set, model predictions and
performance were determined at the best fitting τS for each
animal, and the distribution of shuffled-data model performances
quantified (n= 1000 repetitions each). Figure 6b shows the
distribution of correlations for both magnitude and ITI

permutations. In both animals, our observed correlations (black
line) are significantly different from the permuted null distribu-
tion (p < 0.01) for the magnitude shuffles and significantly
different for the ITI shuffle in animal B (p < 0.05). The relatively
small impact of timing information in model performance is
expected given the experimental design: ITI variability was small
(600–900 ms) compared to the timescale of the model slow circuit
(~60 s). The ability of the ITI shuffles to decrease model
performance is likely driven by post-error time-outs, which
increased the interval between successive trials following aborted
trials; consistent with this idea, the animal that exhibited a
significant ITI shuffle effect also exhibited more time-outs on
average (Supplementary Fig. 1). These findings show that the
reward sequence, and to a lesser degree the precise timing, are
necessary for the model to replicate empirical adaptation effects,
suggesting that the influence of reward statistics on choice
behavior may be implemented by the dynamical behavior of
neural valuation circuits.

Discussion
How intrinsically constrained neural systems efficiently represent
the wide range of behaviorally relevant information is a funda-
mental question in neural coding. In sensory systems, spatial and

Monkey B

N
or

m
al

iz
ed

 s
lo

pe
 d

iff
er

en
ce

(b
eh

av
io

r)

C
or

re
la

tio
n

(s
lo

pe
 d

iff
er

en
ce

s)

Monkey Ha

Tau ratio

1 7 8 9 10 11 12 13 14 15 16 17 18 19 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

* * * *

* * *

0 0.2 0.4 0.6 0.8 10

Normalized slope difference
(simulation)

Normalized slope difference
(simulation)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
R = 0.453 R = 0.314

Monkey B
Monkey H

b

×100

Fig. 5 Across-session variability of adaptation strength captured by
normalization model. a Correlation between strength of adaptation effect in
monkey and model choices across sessions. Each point plots the difference
in model choice stochasticity (narrow−wide) versus the difference in
monkey choice stochasticity (narrow−wide) in a single session. Model
performance evaluated using the best fitting tau ratio in each monkey.
b Model performance at different slow circuit timescales. Each line shows
correlation between model and monkey adaptation effects across all
sessions (asterisk, Pearson's correlations significant at p < 0.05)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05507-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3206 | DOI: 10.1038/s41467-018-05507-8 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


temporal contextual modulation of neural responses are thought
to optimize neural coding for static and dynamic regularities in
the sensory environment2,3,10. Importantly, these described cod-
ing changes predict behavioral changes at the perceptual level
such as the tilt illusion and the motion aftereffect10. The extent to
which these neural computational principles apply to value
coding, and what influence they have on choice behavior, is

relatively less understood. Here we demonstrate a value adapta-
tion effect on mean choice behavior in nonhuman primates.
Consistent with efficient coding principles, the steepness of sto-
chastic choice functions varies with the width of the recent value
distribution. Notably, this adaptation effect displays a substantial
amount of variability in both its magnitude and direction. We
find that this adapting choice behavior can be explained by a
dynamic value normalization model incorporating slow and fast
timescale circuits. Dynamic normalization accounts for both the
average adaptation effect as well as a considerable proportion of
its variability, suggesting that value adaptation is driven by local
reward changes rather than global reward statistics. While rein-
forcement learning processes in theory can produce sequential
trial effects on valuation and generate choice stochasticity, the
task used here is entirely deterministic in reward structure and a
simple reinforcement learning model does not explain either the
observed choice behavior or across-session variability in the
extent of adaptation (Supplementary Fig. 2).

Adaptation is a characteristic feature of single neuron com-
putation in sensory processing7 and extends to value coding in
reward-related brain areas, including midbrain dopaminergic
nuclei and OFC26,33,36. Our results extend these neural findings
to the behavioral domain, showing that—consistent with recent
theoretical findings36—value-guided choice behavior also adapts
to the recent reward environment. These adaptive changes in
choice performance follow in principle from previously demon-
strated value-coding changes, though establishing a definitive link
between adaptation in value-coding activity and in choice beha-
vior will require further study. In sensory processing, adaptation
does not always reliably improve discriminability for stimuli
similar to the adapter and often drives other changes in percep-
tual performance34 (e.g., biases). While our results show a change
in value-guided discriminability, adaptation to reward statistics
could also produce other changes in choice behavior such as
preference biases, particularly under different adaptation condi-
tions (see Supplementary Discussion).

Regardless of the underlying biophysical mechanism, the slow
temporal dynamics evident in our behavioral results emphasizes
that the brain integrates information over real time rather than
discrete trials. As our permutation tests demonstrate, merely
shuffling the temporal structure reduces the predictive power of
our model. This establishes that the actual temporal structure,
and not merely the trial order, determines how reward history is
integrated into an estimate of the reward environment. This
finding is additionally supported by the fact that shuffling the
temporal structure has a more detrimental effect on the
behavior–model correspondence in the animal that has a larger
variability in their temporal trial order.

Our modeling results also emphasize the importance of treat-
ing decision-making as a dynamic rather than a stationary pro-
cess and demonstrate the power of a dynamic approach for
explaining variability in choice behavior. The empirical adapta-
tion effects we observed were variable across sessions despite
identical average reward statistics, suggesting that adaptation
responds to local, within-block fluctuations in reward environ-
ments. This variability in strength of adaptation was captured by
a dynamic normalization model whose only input was the stream
of observed rewards, indicating that behaviorally driven reward
adaptation does not require explicit knowledge of distributional
characteristics. A crucial element of this normalization model is
the existence of two timescales of operation: a fast timescale in the
choice behavior circuit and a slow timescale in the circuit inte-
grating reward information over multiple trials. This dual time-
scale network is consistent with recent evidence that neurons
exhibit a diversity of time constants49,50. In our data, optimal
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slow circuit time constants were comparable between both ani-
mals (60–75 s); however, it is possible that environmental char-
acteristics could influence the temporal integration process51,52.

Our model follows from previous proposals of context
dependent choice mechanisms24,46,53 and can be seen as an
approximation to a general mechanism for implementing flexible
decision-making through context dependence. While previous
work has demonstrated19,48 that the fast dynamic circuit in our
model corresponds well with electrophysiological characteristics
of area LIP neurons, we remain open to the exact implementation
and localization of the slow dynamic circuit. Our model imple-
ments a form of divisive normalization, a computation proposed
to be a canonical cortical operation3 that operates in many dif-
ferent neural processes, brain regions, and species. Our current
model extends previously used normalization equations to
incorporate both spatial and temporal context, further supporting
the idea that normalization is a general neural computation.
Many flavors of normalization models can potentially be con-
ceived and the exact biophysical mechanisms are still under
debate3,54,55 but the importance of the implied computational
mechanism lies in its simplicity and generality. Our approach
extends this generality and reconciles adaptation-like processes
under the umbrella of normalization (for limitations, see Supple-
mentary Discussion).

In summary, we present here behavioral evidence demon-
strating the effect of value adaptation on choice stochasticity.
These adaptive changes in choice behavior are explained by a
dynamic cascaded normalization model that captures session-by-
session variability in the extent of adaptation and uncovers the
behaviorally appropriate timescale integrating past reward
information. Since decisions are rarely conducted in isolation, it is
of crucial behavioral importance to understand how organisms
adapt to the value context defined by the local temporal history.
Establishing the dynamics of value coding and representation
yields behavioral insights into choice behavior impossible to
capture with traditional choice models.

Methods
Subjects. Two male rhesus monkeys (Macaca mulatta) were used as subjects
(Monkey H, 11.3 kg; Monkey B, 7.8 kg). All experimental procedures were per-
formed in accordance with the United States Public Health Service’s Guide for the
Care and Use of Laboratory Animals and approved by the New York University
Institutional Use and Care Committee. Experiments were conducted in a dimly lit,
sound-attenuated room using standard techniques. Briefly, the monkeys were head
restrained and seated in a custom-built Plexiglas primate chair that permitted arm
and leg movements. Visual stimuli were generated using a liquid-crystal display
(240 Hz) placed 67 cm in front of the animal. Monkeys' eye movements were
monitored using the Oculomatic video-based system56. Monkey H’s eye move-
ments were also recorded using a scleral search coil, with horizontal and vertical
eye position sampled at 600 Hz using a quadrature phase detector (Riverbend
Electronics). Presentation of visual stimuli and juice reinforcement delivery were
controlled with integrated software and hardware systems, controlled by a custo-
mized MonkeyLogic57 package.

Task. Trained monkeys were offered a choice between two options differing in
reward magnitude and juice type (delayed two alternative forced choice task).
Monkeys were trained to fixate on a central fixation spot for 500 ms after which a
choice display comprised of colored squares indicating the juice type and magni-
tude of the options was presented at 16° eccentricity. Monkeys had to maintain
fixation for an additional 1200 ms until the fixation dot disappeared and a saccade
toward one of the option targets could then be initiated. Monkeys’ gaze had to
reach the target within 500 ms and hold fixation on the target for an additional 400
ms to obtain the chosen juice reward (Fig. 2a). Time intervals between trials (ITI)
were jittered between 600 and 900 ms. Juices were delivered through a multi-line
juice tube. Each juice line was controlled by an independent solenoid valve. Routine
calibrations were performed to match the juice quantity (~80 µl) to solenoid
opening times. Magnitude of juice reward was realized by opening and closing (75
ms dead time) the solenoid according to the magnitude of the reward stimulus
selected by the monkey.

Block of trials were presented that were composed of a mixture of adapter trials
and test trials. Trial composition was assigned to be 60% adapter trials and 40% test
trials, with individual trial identity determined randomly. In test trials, fixed in
structure across all blocks, monkey chose between an unvarying reference reward
(fixed reward magnitude and juice type) and one of the five variable rewards
(Fig. 2b). These responses allowed us to plot the monkey’s probability of choosing
the reference reward as a function of the magnitude of the variable reward: a choice
curve. What we systematically varied across blocks was the structure of the adapter
trials. The structure was comprised of a narrow versus a wide standard deviation in
the magnitude of randomly presented adapter trial options. We then examined the
effects of the standard deviation of adapter variability on the slopes of these choice
curves. Monkeys were required to complete both condition blocks within a single
session. Thus, on a given testing day, animals were required to complete both one
wide and one narrow block. Block order was randomized over recording days. Only
days in which monkeys performed >230 trials per block correctly were included in
the analysis. On average, animals performed 289 trials per block leading to an
average of total of 578 trials per daily session. An additional accuracy criterion of
80% correct trials was used for data inclusion. A total of 9 days of data collection
had to be discarded from analysis of which 5 days were due to poor animal
performance (below 80%) and 4 days due to equipment failure. The average
accuracy over both animals was 85%. Switches between blocks within a testing day
were not overtly signaled to the animal. However, we note that, since offer
quantities were unique between blocks, it is possible that the animal could identify
block changes from this indirect signal.

Data analysis and modeling. Analysis of behavioral data and model performance
used a total of 69 sessions (Monkey B, n= 30; Monkey H, n= 39). Only choice
data from test trials (which were constant across conditions) were used for the
following analysis. To examine the effect of adapter block identity on choice per-
formance, we independently fit choice data from test trials in each block to a
standard sigmoidal function (y= 1/(1+ 10(x50−x) × s)) and used the resulting slope
of the choice curve as the parameter representing overall choice stochasticity. We
then tested for systematic differences in choice stochasticity between the two
behavioral conditions both on a mean aggregate level (all choices over days
combined) or on a daily basis (all choices within daily conditions) and assessed the
significance of the differences using permutation testing. We additionally ran a
control regression analysis predicting condition choice stochasticity as a function of
number of trials correct, condition completion time, and average response
latency. For the modeling, we extended well-studied previous models of static
divisive normalization to the temporal domain as a set of cascaded differential
equations.

Our model uses a two-stage cascaded approach in which the incoming value
information is first normalized with respect to the other concurrent value option
via lateral inhibition. In a second stage, value information is normalized by a time
discounted version of previously encountered value options. To estimate the
predictive accuracy of this model, we used a two-fold approach. First, we
individually solved the set of equations using the Runge–Kutta method for each
behavioral time series. Behavioral time series were evaluated at a millisecond level
with reward magnitudes and timing determined from the actual monkey
experience in each session; note that model ITIs also included time-outs
implemented following any aborted trials. Fixed parameters were used for
evaluation (ω= 1, β= 1, α= 1 for all i and j). These parameters were chosen to
produce the simplest form of the model in which no a priori knowledge of
excitation to inhibition weighting is known, baseline activity is zero, and inhibition
is global to the cascade stage level. Excitatory and inhibitory τ values within a given
circuit (slow, fast) were set to be equal. Previous work48 has demonstrated that a
network with equivalent excitatory and inhibitory time constants accurately
characterizes value-coding activity in decision circuits; more broadly, standard
mean-field approaches generally assume equivalent or approximately equivalent
timescales within a network58–60. Temporal integration dynamics were modeled by
explicitly setting a τ-ratio between the fast and slow components of our network.
We independently re-evaluated our model for a range of τ-ratios spanning from
short (5 s) timescales of about one trial to long (125 s) timescales encompassing
many trials.

The resulting raw network activity was used to construct a probabilistic choice
curve similar to the fitting of the behavioral results. The simple difference in
modeled firing rate between the two presented options was used as a metric of
choice output on a given trial. This means that, if the network consistently
produces a large difference between concurrent presentations of the same options,
the resulting choice probability becomes less stochastic. Variations in the firing rate
differences over trials and time, as well as small differences in firing rates on the
other hand, indicate larger stochasticity. In a final step, we aggregated the resulting
modeled choice data and related the change in choice stochasticity over the
experimental conditions to the changes observed in the actual behavioral data.

Code availability. The code used for data analysis and simulations is available
from the corresponding author upon reasonable request.
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Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Received: 18 December 2017 Accepted: 10 July 2018

References
1. Barlow, H. B. Possible Principles Underlying the Transformation of Sensory

Messages. Sensory Communication (MIT Press, Cambridge, MA, 1961).
2. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural

representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).
3. Carandini, M. & Heeger, D. J. Normalization as a canonical neural

computation. Nat. Rev. Neurosci. 13, 51–62 (2011).
4. Laughlin, S. A simple coding procedure enhances a neuron’s information

capacity. Z. Naturforsch. C. Biosci. 36, 910–912 (1981).
5. Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis.

Neurosci. 9, 181–197 (1992).
6. Gutnisky, D. A. & Dragoi, V. Adaptive coding of visual information in neural

populations. Nature 452, 220–224 (2008).
7. Wark, B., Lundstrom, B. N. & Fairhall, A. Sensory adaptation. Curr. Opin.

Neurobiol. 17, 423–429 (2007).
8. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. Adaptive rescaling

maximizes information transmission. Neuron 26, 695–702 (2000).
9. AtickJ. J. & RedlichA. N. Towards a theory of early visual processing. Neural

Comput. 2, 308–320 (1990).
10. Schwartz, O., Hsu, A. & Dayan, P. Space and time in visual context. Nat. Rev.

Neurosci. 8, 522–535 (2007).
11. Angelucci, A. et al. Circuits and mechanisms for surround modulation in

visual cortex. Annu. Rev. Neurosci. 40, 425–451 (2017).
12. Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W. & Meister, M.

Adaptation of retinal processing to image contrast and spatial scale. Nature
386, 69–73 (1997).

13. Kohn, A. Visual adaptation: physiology, mechanisms, and functional benefits.
J. Neurophysiol. 97, 3155–3164 (2007).

14. Shapley, R. & Enroth-Cugell, C. Visual adaptation and retinal gain controls.
Progress. Retin. Res. 9, 263–346 (1984).

15. Carandini, M. Visual cortex: fatigue and adaptation. Curr. Biol. 10,
R605–R607 (2000).

16. Tversky, A. Elimination by aspects: a theory of choice. Psychol. Rev. 79,
281–299 (1972).

17. Huber, J., Payne, J. W. & Puto, C. Adding asymmetrically dominated
alternatives: violations of regularity and the similarity hypothesis. J. Consum.
Res. 9, 90–98 (1982).

18. Simonson, I. Choice based on reasons: the case of attraction and compromise
effects. J. Consum. Res. 16, 158–174 (1989).

19. Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control:
divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

20. Rorie, A. E., Gao, J., McClelland, J. L. & Newsome, W. T. Integration of
sensory and reward information during perceptual decision-making in lateral
intraparietal cortex (LIP) of the macaque monkey. PLoS ONE 5, e9308 (2010).

21. Pastor-Bernier, A. & Cisek, P. Neural correlates of biased competition in
premotor cortex. J. Neurosci. 31, 7083–7088 (2011).

22. Itthipuripat, S., Cha, K., Rangsipat, N. & Serences, J. T. Value-based
attentional capture influences context-dependent decision-making. J.
Neurophysiol. 114, 560–569 (2015).

23. Hunt, L. T., Dolan, R. J. & Behrens, T. E. J. Hierarchical competitions
subserving multi-attribute choice. Nat. Neurosci. 17, 1613–1622 (2014).

24. Louie, K., Khaw, M. W. & Glimcher, P. W. Normalization is a general neural
mechanism for context-dependent decision making. Proc. Natl. Acad. Sci. USA
110, 6139–6144 (2013).

25. Tremblay, L. & Schultz, W. Relative reward preference in primate
orbitofrontal cortex. Nature 398, 704–708 (1999).

26. Kobayashi, S., Pinto de Carvalho, O. & Schultz, W. Adaptation of reward
sensitivity in orbitofrontal neurons. J. Neurosci. 30, 534–544 (2010).

27. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5,
483–494 (2004).

28. Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by
dopamine neurons. Science 307, 1642–1645 (2005).

29. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode
economic value. Nature 441, 223–226 (2006).

30. Padoa-Schioppa, C. & Assad, J. A. The representation of economic value in
the orbitofrontal cortex is invariant for changes of menu. Nat. Neurosci. 11,
95–102 (2008).

31. Grattan, L. E. & Glimcher, P. W. Absence of spatial tuning in the orbitofrontal
cortex. PLoS One 9, e112750 (2014).

32. Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model.
Annu. Rev. Neurosci. 34, 333–359 (2011).

33. Padoa-Schioppa, C. Range-adapting representation of economic value in the
orbitofrontal cortex. J. Neurosci. 29, 14004–14014 (2009).

34. Solomon, S. G. & Kohn, A. Moving sensory adaptation beyond suppressive
effects in single neurons. Curr. Biol. 24, R1012–R1022 (2014).

35. Snow, M., Coen-Cagli, R. & Schwartz, O. Adaptation in the visual cortex: a
case for probing neuronal populations with natural stimuli. F1000Res. 6, 1246
(2017).

36. Rustichini, A., Conen, K. E., Cai, X. & Padoa-Schioppa, C. Optimal coding and
neuronal adaptation in economic decisions. Nat. Commun. 8, 1208 (2017).

37. Rigoli, F., Friston, K. J. & Dolan, R. J. Neural processes mediating contextual
influences on human choice behaviour. Nat. Commun. 7, 12416 (2016).

38. Rigoli, F., Rutledge, R. B., Dayan, P. & Dolan, R. J. The influence of contextual
reward statistics on risk preference. Neuroimage 128, 74–84 (2016).

39. Padoa-Schioppa, C. Neuronal origins of choice variability in economic
decisions. Neuron 80, 1322–1336 (2013).

40. Walton, M. E., Behrens, T. E. J., Noonan, M. P. & Rushworth, M. F. S. Giving
credit where credit is due: orbitofrontal cortex and valuation in an uncertain
world. Ann. NY Acad. Sci. 1239, 14–24 (2011).

41. Palminteri, S., Khamassi, M., Joffily, M. & Coricelli, G. Contextual modulation
of value signals in reward and punishment learning. Nat. Commun. 6, 195
(2015).

42. LoFaro, T., Louie, K., Webb, R. & Glimcher, P. W. The temporal dynamics of
cortical normalization models of decision-making. Lett. Biomath. 1, 209–220
(2014).

43. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Divisive normalization in olfactory
population codes. Neuron 66, 287–299 (2010).

44. Kaliukhovich, D. A. & Vogels, R. Divisive normalization predicts adaptation-
induced response changes in macaque inferior temporal cortex. J. Neurosci.
36, 6116–6128 (2016).

45. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron
61, 168–185 (2009).

46. Louie, K. & Glimcher, P. W. Efficient coding and the neural representation of
value. Ann. NY Acad. Sci. 1251, 13–32 (2012).

47. Westrick, Z. M., Heeger, D. J. & Landy, M. S. Pattern adaptation and
normalization reweighting. J. Neurosci. 36, 9805–9816 (2016).

48. Louie, K., LoFaro, T., Webb, R. & Glimcher, P. W. Dynamic divisive
normalization predicts time-varying value coding in decision-related circuits.
J. Neurosci. 34, 16046–16057 (2014).

49. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex.
Nat. Neurosci. 17, 1661–1663 (2014).

50. Chaudhuri, R., Bernacchia, A. & Wang, X.-J. A diversity of localized timescales
in network activity. eLife 3, e01239 (2014).

51. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S.
Learning the value of information in an uncertain world. Nat. Neurosci. 10,
1214–1221 (2007).

52. Farashahi, S. et al. Metaplasticity as a neural substrate for adaptive learning
and choice under uncertainty. Neuron 94, 401–414.e6 (2017).

53. Louie, K., Glimcher, P. W. & Webb, R. Adaptive neural coding: from
biological to behavioral decision-making. Curr. Opin. Behav. Sci. 5, 91–99
(2015).

54. SatoT. K., HaiderB., HäusserM. & Carandini, M. An excitatory basis for
divisive normalization in visual cortex. Nat. Neurosci. 19, 568–570 (2016).

55. Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V. & Scanziani, M.
Input normalization by global feedforward inhibition expands cortical
dynamic range. Nat. Neurosci. 12, 1577–1585 (2009).

56. Zimmermann, J., Vazquez, Y., Glimcher, P. W., Pesaran, B. & Louie, K.
Oculomatic: high speed, reliable, and accurate open-source eye tracking for
humans and non-human primates. J. Neurosci. Methods 270, 138–146 (2016).

57. Asaad, W. F. & Eskandar, E. N. A flexible software tool for temporally-precise
behavioral control in Matlab. J. Neurosci. Methods 174, 245–258 (2008).

58. Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

59. Humanski, R. A. & Wilson, H. R. Spatial frequency mechanisms with short-
wavelength-sensitive cone inputs. Vision. Res. 32, 549–560 (1992).

60. Cowan, J. D., Neuman, J. & van Drongelen, W. Wilson-Cowan equations for
neocortical dynamics. J. Math. Neurosci. 6, 1 (2016).

Acknowledgements
We thank all members of the P.W.G. Laboratory, especially Kai Steverson for helpful
comments and discussions. We also thank Rushell Dixon and Echo Wang for help with
animal husbandry. This work was supported by grants from the National Institute of
Health (R01MH104251 to K.L., R01DA038063 to P.W.G. and T32EY007136 to J.Z.).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05507-8

10 NATURE COMMUNICATIONS |  (2018) 9:3206 | DOI: 10.1038/s41467-018-05507-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Author contributions
All the authors designed the experiment and wrote the manuscript. J.Z. collected and
analyzed the data.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-05507-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05507-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3206 | DOI: 10.1038/s41467-018-05507-8 |www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-018-05507-8
https://doi.org/10.1038/s41467-018-05507-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Multiple timescales of normalized value coding underlie adaptive choice behavior
	Results
	Dynamic normalization model of value adaptation
	Example model behavior
	Behavioral results
	Modelling adapting choice behavior

	Discussion
	Methods
	Subjects
	Task
	Data analysis and modeling
	Code availability
	Data availability

	References
	Acknowledgements
	ACKNOWLEDGEMENTS
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




