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NHE6 itself is trafficked through the

endosomal recycling pathway. Rack1 in-

teracts with the C terminus of NHE6,

NHE7, and NHE9. Knockdown of Rack1

caused a decrease in cell surface levels

of NHE6, while an increase in endoso-

mal-associated NHE6 led to elevated

endosomal pH, indicating the impor-

tance of maintaining NHE6 levels

between intracellular compartments and

the plasma membrane. These data sug-

gest that a tightly regulated distribution

of NHE6 is required for proper polarized

membrane trafficking and maintenance

of cell polarity (Ohgaki et al., 2011). Similar

trafficking control is surely operative in

neurons to ensure the correct distribution

of proton pumps and exchanger and

thereby the correct acidification of the

endosome. Much still needs to be learned

about the molecular mechanisms that

achieve this and what the functional

consequences are of loss of proper

organelle acidification. Exciting progress
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is now linking disturbances in acidification

to neurodegeneration (Li and DiFiglia,

2012; Nixon et al., 2001; Wang and Hie-

singer, 2012) and, in this most recent

paper, to autism-related neurodevelop-

mental disorders.
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Exploiting Exploration:
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Applying past knowledge to future actions is crucial for adaptive choice behavior. Here, in this issue of
Neuron, Donahue et al. (2013) show that reward enhances neural coding reliability for actions in a network
of frontal and parietal brain areas.
Consider a soccer player lining up for

a penalty kick, who knows from past

experience that the goalie has a slight

bias for rightward saves but only at

the end of a match. To use that infor-

mation, he must weigh the context,

appropriately value different alternatives,

and select and execute an action. Thus,

the process of applying prior knowledge

to future behavior involves a number of

related cognitive functions—including

valuation, memory, action selection,

and cognitive control—necessary for
adaptive decision making in a dynamic

environment.

An influential framework integrating

these processes arises from computa-

tional theories of machine learning (Sut-

ton and Barto, 1998). The core idea in

these reinforcement learning (RL) models

is that agents acquire information about

the value of actions through interaction

with the environment, using reward to

guide the learning process. To update

the value of actions, such models

employ error-driven learning using a
quantity known as reward prediction

error (RPE), the difference between

reward received and reward expected.

For example, actions that produce

reward that is better than expected

have their associated values increased.

In stable environments, this procedure

produces value estimates that converge

appropriately to the average reward.

Neuroscientific interest in RL emerged

with the discovery that midbrain dopa-

mine neuron activity in classical and

operant conditioning tasks carries an
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Figure 1. Neural Activity Underlying Strategic Exploration
(A) Brain regions involved in saccadic decision making. Donahue et al. (2013) report analyses of neural
data from multiple cortical regions, including those involved in saccade selection and execution (LIP)
and those involved in postaction processing and cognitive control (ACC, SEF, and DLPFC).
(B) The effect of past actions and outcomes on neural activity during strategic exploration. Left: represen-
tation of possible outcomes in the matching pennies game (red circle, computer choice; arrow, monkey
choice). Right: schematic depicting interactive effect of previous reward and action on current neural ac-
tivity. This interaction produces an enhanced neural discrimination of past actions when reward was pre-
viously received (inset).
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RPE signal (Schultz et al., 1997). Sub-

sequent work has successfully applied

the RL framework in a variety of brain

systems and behavioral paradigms to

characterize value- and choice-related

neural activity and value-guided decision

behavior (Lee et al., 2012).

Reinforcement learning works remark-

ably well in stable environments but

faces an additional important challenge

when the state of the world is uncertain

and changing (Sutton and Barto, 1998).

Given an evaluation of the possible

actions, the goal of an agent is to exploit

current knowledge in choosing the high-

est valued option. However, changing

conditions in a dynamic environment

necessitate an exploration of nonoptimal

alternatives in order to maintain accu-
rately updated values. Solving this trade-

off between exploration and exploitation

is a fundamental problem in learning

through reinforcement. A particular ques-

tion of interest is how the brain switches

from exploitative behavior, which is a

natural byproduct of a value-guided

decision system, to strategic exploratory

behavior, which forgoes current value

maximization for a more global optimality.

Recent progress has identified neural

substrates involved in exploration, such

as the neuromodulatory noradrenergic

system (Usher et al., 1999) and frontopo-

lar cortex (Daw et al., 2006), but the full

extent of cortical circuits involved in

strategic exploration is unknown.

In this issue of Neuron, Donahue et al.

(2013) examine the relationship between
Neuron
strategic exploration and a network

of cortical regions related to saccade

selection, execution, and postsaccade

processing. Action selection in the eye

movement system has long been a

model of neurobiological decision making

(Glimcher, 2003), and lesion and elec-

trophysiology studies have identified

core sensorimotor structures involved in

the decision process (Figure 1A). A key

structure in this network is the lateral

intraparietal (LIP) area, which receives

afferents from higher-order sensory areas

and displays both sensory and motor

modulation. Consistent with a central

role in decision making, saccade-selec-

tive activity in LIP represents the infor-

mation necessary for decision formation,

for example, accumulating evidence

for a given response in perceptual dis-

crimination tasks (Shadlen and News-

ome, 2001).

LIP efferents project to the frontal eye

field (FEF) and superior colliculus (SC),

and together this network (along with the

caudate in the basal ganglia) plays an

essential role in saccade selection and

execution. FEF and SC are necessary for

saccade generation: saccades are initi-

ated only whenmovement-related activity

reaches a fixed threshold, microstimu-

lation in these structures elicits fixed

vector saccades, and lesions disrupt

saccade initiation. Consistent with the

anatomy, LIP appears to play a more

upstream role. While lesions in LIP leave

saccades to single targets relatively

intact, they produce substantial deficits

in target selection from multiple alterna-

tives. Importantly, action value informa-

tion strongly modulates neural activity in

these areas during the choice process,

consistent with an integrated evaluation

and decision-making network (Glimcher,

2003). Note that this system, which

selects saccades based on value, is

designed to implement exploitation

behavior.

However, there are a number of

additional brain areas anatomically and

functionally linked to these core sensori-

motor circuits that play a different, less

transparent role in choice behavior. These

areas include three interconnected re-

gions (among others) in frontal cortex:

the supplementary eye field (SEF), ante-

rior cingulate cortex (ACC), and dorsolat-

eral prefrontal cortex (DLPFC). These
80, October 2, 2013 ª2013 Elsevier Inc. 7
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areas are related to saccades but not

necessary for action initiation or execu-

tion; instead, activity in these regions

represent a variety of error- and reward-

related signals that may be involved in

performance monitoring and executive

control of the gaze process (Ito et al.,

2003; Schall et al., 2002; Stuphorn et al.,

2010). Neural activity in these areas,

most notably in SEF and ACC, often oc-

curs after action completion, consistent

with a role in reward processing and

outcome-based updating. Similar evalua-

tive signals occur in humans, where

strong negative potentials are recorded

over medial frontal cortex when errors

are made in simple behavioral tasks

(Gehring et al., 1993). In contrast to the

core oculomotor network defined by LIP

and FEF, postaction processing in these

frontal areas suggests a role in executive

control and a potential involvement in

regulating exploratory behavior.

In this study, Donahue et al. (2013)

examine the neural basis of strategic

exploration by taking advantage of an

impressive data set of recordings from

SEF, DLPFC, ACC, and LIP neurons and

using two behavioral tasks designed to

elicit either exploitation or exploration.

To elicit exploitation behavior, they used

a simple visual search task, where the

location of the rewarded target was

explicitly cued in each trial. In this task,

reward was determined by a fixed rule

and monkeys simply had to choose

the high-value, cued target. To elicit

exploration behavior, they used a

competitive game known as matching

pennies. In this task, played against a

computer opponent, monkeys chose

between two identical targets. Much

like the soccer player taking a penalty

kick, reward outcome depended on the

behavior of the opponent: the monkey

was rewarded only if he chose the same

target chosen by the computer (revealed

after the animal’s choice).

Importantly, the computer opponent

employed an algorithm that took advan-

tage of any statistical biases evident in

the animal’s behavior. Thus, to achieve

optimal reinforcement rates, the monkey

should on average choose each target

equally and with independent probability,

irrespective of past choices and out-

comes. Using this form of competitive

game has two experimental advantages.
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First, by penalizing behavioral biases,

this task encourages strategic explora-

tion rather than deterministic behavior.

Second, the resulting stochastic be-

havior dissociates past actions and

reward from future choices, enabling

the experimenters to determine whether

neural activity reflects the influence of

previous knowledge or current action

planning.

Donahue et al. (2013) find that previous

reward and actions influence activity

during the matching pennies task in all

four cortical regions examined but with

some notable and important differences

between areas. In a given trial, during

the time before the monkey made a

choice, a significant fraction of neurons

in all four areas signaled the choice and

reward outcome in the previous trial.

Notably, neurons in SEF, DLPFC, and

LIP—but not ACC—also coded the

interaction between previous reward

and choice (Figure 1B). This interaction

reflects a gating of action coding by

reward, such that neural discrimination

between past actions is enhanced if

reward was received (inset). Because

past and future choices were dissociated

in this task, Donahue et al. (2013) further

show that this enhanced discriminability

reflects information about past but not

upcoming choice.

Intriguingly, Donahue et al. (2013) find

that the SEF may play a particularly

important role in governing exploratory

behavior. While performance in the

matching pennies task approached

optimal randomness, the monkeys

showed a slight but significant bias in

their behavior. Specifically, they adopted

an asymmetric win-stay lose-switch

strategy, repeating previous choices if

rewarded and switching targets if unre-

warded in the previous trial. Their slight

tendency to win-stay more often than

lose-shift produced a small and fluctu-

ating bias to choose the same target

in successive trials. Notably, Donahue

et al. (2013) found that switching behavior

was significantly correlated with the

reward-driven improvements in neural

action decoding but only for the SEF.

Furthermore, enhanced discriminability

in SEF was largely attenuated during

the visual search task, suggesting that

it may play a unique role in guiding explo-

ration behavior.
Inc.
These findings raise important ques-

tions about how these different cortical

regions interact in reinforcement-guided

behavior. Enhanced SEF action coding

following reward appears to facilitate

subsequent exploratory switching be-

havior, but exactly how it does so is not

known. One likely candidate is the strong

projections SEF sends to the FEF. Micro-

stimulation of SEF neurons can produce

either excitatory or suppressive effects

on FEF-mediated saccade initiation,

consistent with a contextual form of

executive control sensitive to task de-

mands (Stuphorn and Schall, 2006).

Thus, SEF may drive exploratory be-

havior by proactively influencing the

saccade selection process in FEF,

perhaps by overriding the default exploi-

tation behavior driven by reinforcement

learning. Characterizing the nature of

this interaction will be an important focus

of future research.

Ultimately, these results point toward

a more nuanced view of reinforce-

ment learning in the brain. Traditional

RL algorithms, including many of those

used to study decision-related neural

activity, focus on learning the values of

actions and choose according to previ-

ously received reward. In contrast to

such model-free RL, increasing work

has focused on model-based learning

strategies, which carry an internal model

of the world and attempt to learn

the sequential contingencies of events,

actions, and reward (Doll et al., 2012).

In the complicated dynamics of a

competitive game, reward is deter-

mined not by the choice of a particular

action but by a sequence of actions.

Thus, a monkey playing matching

pennies must learn strategies rather

than specific actions. This complexity

may explain why circuits like ACC

and DLPFC, which display significant

choice- and reward-related activity

related to value-guided behavior, appar-

ently contribute little to strategic ex-

ploration behavior. Much work remains

to be done in characterizing the inter-

connected brain regions responsible

for exploitation, exploration, and their

relative balance. These current find-

ings provide an important roadmap for

future research at the intersection of

reinforcement learning and strategic

behavior.
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In the September 12, 2013 issue of Nature, the Epi4K Consortium (Allen et al., 2013) reported sequencing
264 patient trios with epileptic encephalopathies. The Consortium focused on genes exceptionally intolerant
to sequence variations and found substantial interconnections with autism and intellectual disability gene
networks.
This is a particularly exciting time for the

genetics of the epilepsies, especially

considering its sordid history. For cen-

turies, epilepsy was considered a sign

of a supernatural presence, often of a

demonic variety. More than 2,000 years

ago, however, Hippocrates warned that

epilepsy was no more sacred than other

diseases and that its origins may lie in he-

redity. Yet, for many years, the epilepsies

were not considered of genetic origin and

up until the 20th century epileptics were

socially isolated. The strong genetic

component of epilepsy was suggested

by observation of familial aggregation,

confirmed by several monozygotic-dizy-

gotic twin studies, and in the 1990s, the

first epilepsy-specific genes were cloned,

encoding ion channels and neurotrans-

mitter receptors. Dominant and recessive

Mendelian inheritance patterns have been

verified for several of these, but it became

clear that these mutations are subject to

partial penetrance (i.e., not every person
with the mutation will develop epilepsy)

and that even if epilepsy develops in a

carrier, not everyone with the mutation

will display the same form of epilepsy.

Other types of genetic alterations, such

as de novo (sporadic) and somatic (limited

to specific brain areas) mutations were

long suspected to contribute to epilepsy

but not validated until recently. Whole-

exome sequencing (WES) provided a

new tool to understand this multifactorial

disorder, allowing a window into the

genetic architecture that for the first time

did not require pedigree and linkage

analysis.

Over the course of several years and

with generous support from the NINDS,

the Epilepsy Genome Phenome Program

(http://www.epgp.org) recruited hun-

dreds of patients and families from an

international network of 27 clinical centers

in the U.S., Europe, and Australia. The

goal of the EPGP program was to enroll

1,500 families in which two or more
affecteds displayed epilepsy and 750

individuals with epileptic encephalopa-

thies (EEs). EEs are a group of progressive

partially overlapping neurological syn-

dromes in which patients, usually young

children, present with psychomotor dys-

functions and concurrent severe clinical

epilepsy, often with infantile spasms,

Lennox-Gastaut syndrome, polymicrogy-

ria, or periventricular heterotopias. The

EPGP cohorts were recruited, meticu-

lously phenotyped, and subsequently

underwent DNA exome sequencing

through the Epi4K consortium, again

funded by the NINDS. The results of the

first sequencing effort of the EEs were

recently published in the journal Nature

(Allen et al., 2013).

Following the idea that clinical homo-

geneity corresponds to genetic homoge-

neity, Allen et al. (2013) focused on two

well-described EEs: infantile spasms and

Lennox-Gastaut syndrome. Collectively,

they sequenced 264 patients and their
80, October 2, 2013 ª2013 Elsevier Inc. 9
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