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Abstract
Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value
coding typically relies on contextual information either obtained from the environment or retrieved from and maintained
in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain’s
capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex
(PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe
alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were
presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk
information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended
on working memory load, such that response functions relating PFC activity to safe values were steeper with presented
versus remembered risk. An independent second study replicated the findings of the first study and showed that
similar slope reductions also arose when memory maintenance demands were increased with a secondary working
memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context
and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that
reduced suppression of background activity was the critical parameter impairing normalization with increased memory
maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value repre-
sentations.

Key words: adaptive coding; value normalization; risky decision-making; memory load; prefrontal cortex; com-
putational model comparison; functional near-infrared spectroscopy

Introduction
Neural systems need to encode vast ranges of inputs,

but the limited dynamic range of neural activities poten-

tially limits fine discriminations between similar inputs
(Fairhall et al., 2001; Ollerenshaw et al., 2014). Adaptive
coding is a mechanism that facilitates neural discrimina-
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Significance Statement

The influence of mnemonic processes on value-based decision-making is only beginning to be understood.
In two separate studies, we investigate how having to maintain information in working memory affects
efficient and adaptive value coding in lateral prefrontal cortex during risky decisions. We show that the
neural suppression of background-related activity, which allows for efficient and adaptive value coding
without working memory demands, is reduced with higher working memory load. Our findings suggest that
working memory load can constrain the normalization of neural value representations, illuminating a novel
facet of the interplay between working memory and value-based decision-making.
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tion between different inputs by taking advantage of in-
formation contained within a given context. It works by
dynamically adjusting the sensitivity of the neural appa-
ratus to the most likely inputs in a given context. Adaptive
coding was first described for sensory inputs, but evi-
dence now suggests that it also extends to value-related
signals, including subjective stimulus values, outcome
values, and prediction errors (Rangel and Clithero, 2012;
Louie et al., 2015; animal work: Tremblay and Schultz,
1999; Tobler et al., 2005; Kennerley and Wallis, 2009;
Padoa-Schioppa, 2009; Kobayashi et al., 2010; Louie
et al., 2011; Rushworth et al., 2011; Cai and Padoa-
Schioppa, 2012; human work: Akitsuki et al., 2003; Nieu-
wenhuis et al., 2005; Elliott et al., 2008; Palminteri et al.
2015; Park et al., 2012; Cox and Kable, 2014; Burke et al.,
2016; Kirschner et al., 2016).

Context-dependent adaptation of neural sensitivity to
value can be described by several competing models.
These models have been developed originally for the
visual system and concur on the notion that context
modulates neural responding to given stimuli but disagree
on how exactly this modulation is implemented. For ex-
ample, divisive normalization (Heeger, 1992; Heeger et al.,
1996; Carandini et al., 1997) states that activity of a visual
neuron reflects the input from its receptive field (e.g., a
preferred stimulus inside the receptive field) normalized
by the summed activity of a pool of neighboring neurons
(e.g., the set of all other nonpreferred stimuli outside the
receptive field). By contrast, a nondivisive alternative
model proposes that neighboring context activity is sub-
tracted from receptive field activity. Importantly, adapta-
tion mechanisms are thought to extend to value coding
processes, with the adaptation models capturing the ac-
tivity of value-processing regions (Louie et al., 2015). For
example, neurons coding value positively may respond
more strongly to higher magnitudes of safe alternatives
(i.e., preferred stimuli) but may be suppressed when less
valuable, e.g., risky alternatives (i.e., nonpreferred stimuli),
are presented simultaneously as a possible choice option.

Typically, adaptive coding is studied with adaptation-
inducing contexts being physically present. However, in
real life, these contexts often have to be remembered and
maintained in working memory, for example during invest-
ment decisions that incorporate previously encoded infor-
mation about the financial state of a company. Yet, it is
largely unknown how adaptive value coding is affected by
having to maintain information in working memory. To
address this question, we investigated neural value adap-

tation in two studies with two experiments each. In Study
1, we varied working memory demand only by requiring
participants to memorize the contextual choice alternative
or not, whereas in Study 2, we additionally varied working
memory load in a secondary task independent of context.
Specifically, both studies consisted of two different risky
decision experiments: in the dual-alternative experiments,
a safe and a risky choice alternative were presented
simultaneously, whereas in the single-alternative experi-
ments, only a safe alternative was presented, and the
risky alternative had to be maintained in working memory.
In Study 2, participants in addition had to maintain either
a sequence of numbers and letters (high working memory
load) or a sequence of zeros (low working memory load).
We hypothesized that the absence of risky alternatives
and high working memory load would reduce the capacity
for adaptive coding owing to a higher background activity
induced by the higher demand on working memory. This
prediction is compatible with a full divisive normalization
model (Louie et al., 2011), according to which higher
baseline pooled activity codetermines adaptation. Given
that neurons in the prefrontal cortex (PFC) show sustained
activity due to higher working memory demands (Levy
and Goldman-Rakic, 2000; Lara and Wallis, 2015), we
expected that normalization-based background activity
would be higher in the single- than the dual-alternative
experiments (Studies 1 and 2) and in high than low work-
ing memory load conditions (Study 2). This would result in
reduced capacity of divisive normalization as expressed
in flatter response functions in the single- compared with
the dual-alternative experiments and in high compared
with low working memory load conditions.

Materials and Methods
We performed two studies. In Study 1, we assessed the

effects of context-related working memory demands on
adaptive value coding in the single-alternative experiment
compared with the memory-free dual-alternative experi-
ment. In Study 2, we manipulated working memory de-
mand also in a context-independent fashion by varying
the amount of information participants had to maintain in
a secondary task while they performed either the single-
alternative experiment or the dual-alternative experiment.

Study 1
Participants

For Study 1, 41 healthy participants (22 females, mean
age � SD � 22.8 � 2.1 years) were recruited through the
Registration Center for Study Participants of the Univer-
sity of Zurich. Participants were randomly assigned to
perform either in the dual-alternative experiment (n � 21,
13 females, mean age � 22.6 � 2.3 years) or in the
single-alternative experiment (n � 20, 9 females, mean
age � 22.9 � 1.8 years). All participants were right-
handed (mean laterality quotient LQ � 88.7 � 21.4) ac-
cording to the Edinburgh Handedness Inventory (Oldfield,
1971). Exclusion criteria were any psychiatric or neuro-
logic disorders or current medication. All participants
gave written informed consent. The study was approved
by the ethics committee of the Canton Zurich and per-
formed in accordance with the Declaration of Helsinki.
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Experimental protocol
All participants completed a variant of a risky-decision

task in which they were asked to make repeated choices
between safe and risky alternatives (Christopoulos et al.,
2009; Tobler et al., 2009; Holper et al., 2014). The task
was implemented in Matlab (Version 2014a; Mathworks),
and stimulus delivery was controlled using Cogent 2000
(Wellcome Department of Imaging Neuroscience, Lon-
don, UK). In the present work, we focused on signals
elicited by the safe alternatives as processed at the onset
of choices between safe and risky alternatives, regardless
of which alternative was chosen.

Both the dual-alternative and the single-alternative ex-
periment consisted of eight blocks of five trials, resulting
in a total of 40 trials (Fig. 1, top). In both experiments, safe
alternatives varied from trial to trial, whereas risky alter-
natives varied only across blocks. When referring to the
original normalization model (Louie et al., 2011) with in-
and outside receptive field inputs, we therefore treated
the safe values as the varying inside (preferred) stimuli,
whereas the risky alternatives were entered as the more
constant outside (nonpreferred) stimuli. Safe alternatives
indicated that participants would receive the given out-
come for sure (100%), whereas risky alternatives indi-
cated an even-chance probability (50/50%) for two
possible outcomes. Please note that risk here is defined
as variance, following the definition of finance theory
(Markowitz, 1952). All alternatives were presented in
Swiss francs (CHF). Four risky alternatives were used,
such that two risk levels were crossed with two levels of
expected values (EV). In particular, there were two low-
risk levels with either low EV (CHF 15/45) or high EV (CHF
40/80), and two high-risk levels with either low EV (CHF
10/50) or high EV (CHF 30/90). The two risk levels served
to manipulate adaptive coding. Safe alternatives were
determined semirandomly within the range of the risky
alternative of a given block, ensuring that experienced
within-block EV approximated across-block EV for each
of the four risky alternatives.

Each block started with a fixation cross shown for 0.5 s,
followed by an 8-s presentation of the risky alternative to
be used in this block. Participants were instructed to
remember the risky alternative. After the risky alternative,
a blank screen was shown for 0.5 s, followed by the
presentation of five choice-trials involving that risky alter-
native. The instructions and trial structure were common
to both the dual- and the single-alternative experiment.
Participants were allowed to practice the task before the
start of the experiment.

Dual-alternative experiment In the dual-alternative ex-
periment, safe and risky alternatives were presented si-
multaneously in each of the five trials. For a period of 5 s,
the safe and risky alternatives were each presented on
one side of the screen. Participants were instructed to
make their choices through key press within these 5 s.
Once choices were made, both alternatives slightly
changed color to indicate that the response was re-
corded. Participants were not informed about the out-
come of their choices to prevent learning and to control
for the possibility that outcomes would influence subse-

quent behavior or brain activity. If participants failed to
respond in time, a brief message instructed them to
“please respond faster.” Missed trials were excluded from
the analysis. Trials were separated by an intertrial interval
with a variable duration of 10–12 s, drawn from a uniform
distribution.

Single-alternative experiment The single-alternative ex-
periment differed from the dual-alternative experiment in
that only the safe alternatives were presented throughout
the five trials. Thus, in each trial, only one safe alternative
was presented in the middle of the screen, therefore
requiring participants to remember the risky alternative.
Again, participants chose the safe or risky alternative by
pressing a key on the keyboard and safe alternatives
varied from trial to trial.

In both the dual- and single-alternative experiment, at
the end of each block, participants were asked to indicate
which of the four possible risky alternatives had been
available for choice during the block. This control ques-
tion checked whether participants remembered the risky
alternative used throughout the five trials of the block.
One participant who gave random answers to these con-
trol questions was excluded from the analysis. Other than
that, participants made no mistakes. At the end of the
complete experimental session, participants received the
outcome of one randomly drawn trial (in CHF). If the draw
resulted in a trial in which participants had chosen a risky
alternative, the outcome of the 50/50% gamble was de-
termined by a random Boolean, where 0 indicated the
lower of the two outcomes and 1 indicated the higher of
the two outcomes.

Study 2
Participants

Study 2 was conducted in a different set of participants
than Study 1. It included 11 participants in the dual-
alternative experiment (5 females, mean age � 24.5 � 3.7
years) and 12 participants in the single-alternative exper-
iment (7 females, mean age � 25.8 � 5.8 years).

Experimental protocol
Study 1 revealed impaired neural adaptation in the

single-alternative compared with the dual-alternative ex-
periment. In line with this finding, neural adaptation ef-
fects with single-alternatives are not unprecedented
(Tobler et al., 2005; Kirschner et al., 2016). However,
adaptation studies often use multiple stimuli or alterna-
tives. In Study 2, we therefore tested whether the more
unusual presentation format of the single-alternative ex-
periment might explain the effects or whether increasing
working memory load through an independent secondary
task also would increase baseline activity in the PFC (see
“Hemodynamic responses” in Results) and reduce neural
value adaptation in the more typical dual-alternative lay-
out.

In Study 2, we therefore varied working memory load
separately of the single-alternative versus dual-alternative
manipulation. Specifically, we redesigned three aspects of
Study 1 (Fig. 1). First, we added a secondary, decision-
independent working memory part before both dual- and
single-alternative experiments. This additional, context-
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Figure 1. Experimental design. Top: Study 1. Trial structure of the dual- and single-alternative experiment. The block part consisted
of the context-setting presentation of the risky alternative and was identical for both experiments. By contrast, the trial part differed
between experiments in that both the risky and the safe alternative were shown in the trials of the dual-alternative experiment,
whereas only the safe alternative was shown in the trials of the single-alternative experiment. In the control part, participants indicated
which risky alternative was active during the preceding block by pressing the corresponding number key on the keyboard. Bottom:
Study 2. Trial structure was as in Study 1, but each block was preceded by a secondary working memory part, represented by a
context-independent sequence of numbers and letters, that had to be maintained in working memory and recalled from longer-term
memory at the end of the block.
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independent, working memory load also translated more
closely the idea that visual adaptation effects arise from the
interplay between preferred (context-dependent) and non-
preferred (context-independent) receptive field stimulation,
although the analogy should be interpreted with care. Sec-
ond, we used a finer scale of the safe alternatives by as-
sessing 21 safe alternatives for each risky alternative
(instead of 10 alternatives in Study 1). The finer scale of the
safe alternatives allowed for more complete sampling and
better qualitative assessment of value adaptation. Third, we
increased working memory load by requiring participants to
remember the risky alternative over 21 trials (instead of 5
trials in Study 1). We hypothesized that both context-
dependent and context-independent working memory load
will be evidenced in PFC. If both types of working memory
load affect neural adaptation in a similar manner, then add-
ing high context-independent working memory load to the
dual-alternative experiment with the secondary task may
have effects on neural adaptation similar to removing one
choice alternative in single-alternative experiments.

The addition of low or high context-independent work-
ing memory load was implemented by the presentation of
a sequence of items at the start of each block in both the
dual- and single-alternative experiment. In low-load
blocks, we presented a sequence of zeros (i.e., 0 0 0 0),
whereas in high-load blocks, we presented a sequence of
numbers and letters (e.g., 8 B 5 G; Fig. 1, bottom). In both
the dual- and single-alternative experiments, at the end of
each block, participants were asked to reproduce the
sequence that had been presented at the start of the
block by pressing the corresponding numbers and letters
on the keyboard. This control question checked whether
participants remembered the sequence throughout the 21
trials of each block. Two participants (one from the dual-
and one from the single-alternative experiment) who
made more than two sequence recall mistakes overall
were excluded from further analysis.

Instrumentation
In both studies, hemodynamic responses were re-

corded using functional near-infrared spectroscopy
(fNIRS; LLC NIRx Medical Technologies). 16 channels
covered parts of the lateral and medial PFC (see Fig. 2 for
channel positions). The system used time-multiplexed
dual-wavelength light-emitting diodes with wavelengths
of 760 and 850 nm. Photoelectrical detectors containing
silicon photodiodes (Siemens) were used for optical re-
cording. Light sources and detectors were placed in a
flexible head cap to allow for direct skin contact (Epitex).
The source-detector geometry ensured a distance of �30
mm between each source and detector. The data acqui-
sition board was connected to a notebook computer
running NIRStar 14.0 (LLC NIRx Medical Technologies).
The sampling rate was 7.81 Hz.

The NIRSLab analysis software (Xu et al., 2014) was
used to preprocess the functional recordings, including
baseline corrections, and removal of long-term trends.
NIRSlab was also used to detect and remove motion
artifacts, which was done in 23 (study 1) and 5 (study 2)
participants after visual inspection. Changes in total he-

moglobin (�[tHb]), derived as the sum of changes in
oxygenated (�[O2Hb]) and deoxygenated (�[HHb]) hemo-
globin, was chosen as the primary parameter of interest.
�[tHb] represents changes in blood volume correlated
with blood flow (Grubb et al., 1974) and is presumed to be
relatively insensitive to vein contamination, thus providing
higher spatial specificity for mapping cerebral activity
compared with �[O2Hb] or �[HHb] separately (Gagnon
et al., 2012).

To compute �[tHb] estimates, we used the general
linear model approach (Uga et al., 2014) with an adapted
hemodynamic response function (HRF) from the onset of
alternatives for 40 sliding time intervals (partially overlap-
ping). Briefly, the adapted HRF differs from the standard
functional MRI (fMRI) approach of using GLMs together
with a canonical HRF in that the optimum temporal pa-
rameters of the peak delay of the HRF were systematically
changed to determine the best-fitting model for the un-
derlying O2Hb and HHb time series data. Time intervals
were 2.5 s long and separated by 180 ms. Thus, together
the intervals covered the hemodynamic activity over 8 s
after onset of the alternatives. This interval-based com-
putation was chosen to characterize the adaptive value
responses with high temporal resolution. Generally, the
peak of the hemodynamic response is assumed to occur
at 5–6 s after stimulus onset, as reported by previous
fNIRS-based studies (Jasdzewski et al., 2003; Matthews
et al., 2008; Cui et al., 2010; Hoshi, 2011).

Data Analysis
The analyses described here examined the adaptation of

prefrontal hemodynamic responses to the values of the safe
alternatives, under (1) the four different contexts (i.e., the

Figure 2. fNIRS channel positions. The channel setup covered
parts of the lateral and medial PFC. For final analysis, we aver-
aged over all channels. The Matlab toolbox NFRI (Singh et al.,
2005) was used to estimate the Montreal Neurologic Institute
coordinates corresponding to the international EEG 10–20 po-
sitions. Channel positions were visualized using BrainNet Viewer
(Xia et al., 2013).
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risky alternatives), (2) the dual- versus single-alternative ex-
periment (i.e., the presence versus the absence of the
risky alternatives), and (3) the high versus low context-
independent working memory load in Study 2. All statis-
tical analyses were performed using Matlab.

Response time and choice behavior
To examine behavioral effects of working memory load

and risk contexts, response times (RTs) were calculated
from the onset of the choice alternatives to the time of the
participant’s button press (“Alternatives” to “Response” in
Fig. 1). Moreover, choice behavior was assessed as per-
centage of trials in which participants selected the risky
alternative (% risky choice). For both RT and % risky
choice in Study 1, we assessed the steepness of the
slopes with regard to the safe values using linear regres-
sion on the level of single participants and compared the
regression slope coefficients using ANOVA with the
within-subject factors risk and EV, and the between-
subject factor experiment, including the Bonferroni cor-
rection for multiple comparisons on the group level; for
Study 2, we added the within-subject factor load. The
results are reported at a significance level of p � 0.05.

Hemodynamic responses
To identify adaptive coding, we assessed the steepness

of the �[tHb] slopes using linear regression on the level of
single participants and compared regression slope coef-
ficients using ANOVA with the within-subject factor con-
text and the between-subject factor experiment, including
the Bonferroni correction for multiple comparisons on the
group level. The results were reported at a significance
level of p � 0.05.

Model predictions
To examine how well-known models of adaptive coding

captured the hemodynamic responses in the PFC, the
�[tHb] beta estimates were fitted to two linear and two
nonlinear models of value adaptation previously consid-
ered by Louie et al. (2011). Note that compared with the
original publication (Louie et al., 2011), we renamed and
changed the order of models 1 and 2 to clarify their
relations and differences.

The difference model (model 1) is a nondivisive model
of adaptation. It predicts that neural activity (A) follows a
linear function of the difference between the safe alterna-
tive values and the risky alternative values:

A � a � b (Vsafe � Vrisky) , (1)

where Vsafe are the safe alternative values, Vrisky are the
risky alternatives, and a and b are fitted individual inter-
cept and scaling parameters. To obtain one value for each
risk context, Vrisky we calculated the standard deviations
of the four possible risky alternatives (low risk and low EV:
15/45; low risk and high EV: 40/80; high risk and low EV:
10/50; high risk and high EV: 30/90, in units points).

The basic divisive normalization model (model 2) pre-
dicts that A is captured by a linear function of the safe
alternative values Vsafe normalized by the total sum of the
safe and risky alternative values Vrisky:

A � a � b
Vsafe

Vsafe � Vrisky
. (2)

The enhanced divisive normalization model (model 3)
predicts that A follows a nonlinear function of the safe
alternative values Vsafe and the risky alternative values
Vrisky, with two additional parameters, where Amax is the
maximum pooled activity, i.e., the maximum amplitude of
the averaged PFC signal, and sigma (�) is the response
slope, i.e., the activity level at which Amax reaches half the
amplitude:

A � Amax

Vsafe

� � Vsafe � Vrisky
. (3)

The full divisive normalization model (model 4) is similar
to the enhanced divisive normalization model but includes
an additional parameter beta (�) representing baseline
pooled activity, i.e., the baseline amplitude of the aver-
aged PFC signal:

A � Amax

Vsafe � �

� � Vsafe � Vrisky
. (4)

The relation between the three parameters can be sum-
marized by the ratio (Amax � �/�) representing the level of
predicted background activity (ABackground). Background
activity (ABackground) is here defined as the overall resulting
activity, taking into account Amax, �, and baseline
pooled activity �. Background activity thereby also repre-
sents the activity when no stimuli were presented while
participants fixated on the fixation cross during the inter-
trial interval. Generally, Amax controls the amplitude of the
response, whereas � and � control the steepness of the
slopes. Note that at large values relative to � (V �� �),
divisive normalization approaches a basic form of the
model as � becomes negligible. According to our hypoth-
esis stated in the introduction, we expected that Amax and
�, representing maximum pooled activity and response
slope, would be the critical parameters determining context-
dependent differences, whereas the parameter �, repre-
senting baseline pooled activity, would be the critical
parameter determining between-experiment differences.

Models 1 and 2, i.e., the difference model and the basic
divisive normalization model, are linear models coding
absolute value, whereas models 3 and 4, i.e., the en-
hanced and the full divisive normalization model, are
nonlinear models representing context-dependent value
coding. Following our hypothesis that baseline pooled
activity relates the effects of working memory load to
adaptive coding and given that baseline activity only fea-
tures in the full normalization model, we expected this
model to outperform the other models in explaining the
between-experiment differences.

Each of the four models was fitted to the �[tHb] data
using either simple linear regression (models 1 and 2) or
nonlinear regression (models 3 and 4). The models were
fitted separately for each channel and each time interval
of the �[tHb] data, per context, experiment, and partici-
pant. In addition, a separate analysis was performed over
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all data to obtain an overall Akaike information criterion
(AIC). The AIC from the overall data analysis was then
used to compare the goodness of fit to the various mod-
els. The AIC provides an information theoretic basis for
model comparison that considers both goodness of fit
and parsimony (Akaike, 1974). No significant differences
in model fit were found between the 16 prefrontal chan-
nels (all differences between �AIC per participant as as-
sessed using t test were p � 0.05), and we therefore
averaged over all channels.

To examine the predictive power of the models, we
tested the model fits for each participant separately
against the rest of the sample using leave-one-parti-
cipant-out cross-validation, to form an average measure
of fit. Based on this, the root mean squared error (RMSE)
between the model predictions and the actual data was
calculated for each model.

Finally, we computed Pearson correlations between
the �[tHb] data and each of the four model predictions
as a secondary measure of model fit following Louie
et al. (2011). To assess the differences between corre-
lation coefficients, we applied the two-sample Kolmogorov–
Smirnov test, separately for the two experiments, and
illustrated the correlation differences using kernel smoothing
function estimates, which show the distribution of correla-
tion coefficients in a more continuous format than histo-
grams.

Results
We first describe the results of Study 1 in detail (Figs.

1–7) and then provide the findings for Study 2 (Fig. 8).

Response time and choice behavior
We assessed both RT and choice behavior with regard

to between-context and between-experiment differences
by comparing the regression slope coefficients on the
group level using an ANOVA with the within-subject factor
context and the between-subject factor experiment.

RT decreased with increasing safe alternative values,
indicating faster RT with larger safe values, and showed a
quadratic effect reflecting choice difficulty (Fig. 3, top).
There was a small effect of context (F � 2.677, p � 0.049;
however, without significant post hoc comparisons;
Table 1, RT) but no effect of experiment (F � 0.884, p �
0.345) and no interaction (F � 1.117, p � 0.344). To-
gether, these results showed that RT were slightly
context-dependent, but not affected by working memory
load.

Choice behavior also showed a decreasing relationship
with increasing safe alternative values, indicating fewer
risky choices with larger safe values (Fig. 3, middle;
Table 1, Choice). Again, there was an effect of context
(F � 48.491, p � 0.001), but no effect of experiment (F �
0.755, p � 0.386) and no interaction (F � 1.087, p �
0.356). Post hoc comparisons revealed more steeply de-
creasing slopes in the low risk and low EV contexts
compared with high EV contexts (low risk and high EV and
high risk and high EV), in both experiments (dual- and
single-alternative). Together, these results showed that
choice behavior was context dependent, but not affected
by working memory load.

Hemodynamic responses
To illustrate the neural responses, we averaged

�[tHb] data over the time interval 4 –7 s after the onset
of the alternatives. Responses showed a linearly in-
creasing relationship with increasing safe alternative
values (Fig. 3, bottom). Thus, prefrontal responses in-
creased with safe values as shown previously with fMRI
(Tobler et al., 2009).

To identify adaptive coding, we tested whether the
steepness of the slopes was context dependent and/or
experiment dependent and found both to be true. We
found an effect of context (F � 7.622, p � 0.001), an effect
of experiment (F � 28.024, p � 0.001), and an interaction
(F � 2.619, p � 0.048). In particular, low-risk contexts (low
risk and low EV, low risk and high EV) and the dual-
alternative experiment resulted in steeper slopes com-
pared with high-risk contexts (high risk and low EV, high
risk and high EV) and the single-alternative experiment.

Similar to the behavioral data, we assessed the
between-context and between-experiment differences by
comparing the regression slope coefficients on the group-
level using an ANOVA with the within-subject factor con-
text and the between-subject factor experiment, including
Bonferroni correction for multiple comparisons (Table 1,
�[tHb]). Low-risk contexts showed significantly steeper
response increases compared with high-risk contexts,
with the between-context differences being significant in
the dual-alternative experiment but not in the single-
alternative experiment (Table 1). Thus, in the dual-alter-
native experiment, responses to safe values increased more
when participants considered a low-risk alternative, in line
with context-dependent adaptive coding of reward value.
Further, the dual-alternative experiment showed significantly
steeper slopes than the single-alternative experiment
(Table 1), suggesting that adaptation was significantly re-
duced in the single-alternative case. Together, these results
showed that neural adaptation of prefrontal value signals
was both context dependent and affected by working mem-
ory load.

Model predictions
To examine whether different models of adaptive cod-

ing could explain the adaptation of prefrontal responses
during risky decisions, we compared how well the four
models predicted hemodynamic responses in the dual-
and the single-alternative experiments. Fig. 4 illustrates
theoretical data (using assumed parameter values) pre-
dicted by the four models of value normalization captured
in Eqs. 1–4 (Louie et al., 2011). The figure specifically
demonstrates the different predicted response slopes as
a function of the safe alternative values for the difference
model (model 1), the basic divisive normalization model
(model 2), the enhanced divisive normalization model
(model 3), and the full divisive normalization model (model 4).
Furthermore, because we expected and found steeper
slopes under low-risk compared with high-risk contexts,
the figure illustrates model 4 for cases with lower � values,
i.e., representing lower baseline pooled activity, under
low-risk compared with high-risk contexts. Importantly,
only models 3 and 4 predicted adaptation to risk contexts
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and, at least based on visual inspection, the predictions of
model 4 appeared to match the observed data (Fig. 3)
particularly well for the dual-alternative experiment.

Model comparison between experiments
Each of the models was fitted to the �[tHb] response

separately for each channel, time interval, context, exper-
iment, and participant. The difference in the AIC values
(�AIC) was calculated for each model pair to compare the
relative goodness of fit. No significant differences in �AIC
were found between the 16 prefrontal channels, and we
therefore averaged over all channels. Considering the 40
sliding time intervals, the fit was highest at �4 s after the
onset of the choice alternatives. Model 4 (full divisive
normalization model) overall showed the best fit to the
data in both experiments (Fig. 5, third column). Further-
more, model 4 fitted the data of the dual-alternative ex-
periment relatively better than those of the single-
alternative experiment (Fig. 5, third row).

To corroborate these findings, we examined the predic-
tive power of the models. Of the four different models, the
full divisive normalization model produced the lowest
RMSE in prediction, for both the dual- and the single-
alternative experiments (RMSEfull_norm: dual-alternative �
0.0039, single-alternative � 0.0038, t � 1.342, p � 0.224).
The next best model was the enhanced divisive model,
which generated slightly higher RMSE, followed by the
basic and the difference model (RMSEenhanced_norm: dual-
alternative � 0.0046, single-alternative � 0.0041, t �
3.231, p � 0.034; RMSEbasic_norm: dual-alternative �
0.0056, single-alternative � 0.0052, t � 3.001, p � 0.028;
RMSEdiff: dual-alternative � 0.0056, single-alternative �
0.0055, t � 1.67, p � 0.321). In accordance with the �AIC
results, the smaller RMSEs suggested that the full divisive
normalization model (model 4) outperformed the other
models in terms of predictive power.

Finally, we asked whether recent trial history may account
for our findings, because it is known that reward adaptation

Figure 3. Behavior and basic neural responses in Study 1. Top: RT slopes. Plots illustrate the effects of risk context and working
memory load on RT, separately for the dual- and single-alternative experiments. (Middle) Choice slopes. Plots illustrate the effects of
context and working memory load on choices of risky options, separately for the dual- and single-alternative experiments. Bottom:
�[tHb] slopes. Plots illustrate the context- and experiment-dependence of �[tHb] response slopes averaged over all channels,
separately for the dual- and single-alternative experiments. Slopes are shown for the peak response (time interval 4–7 s after
alternatives onset). Note that all slopes are shown in terms of the coefficients for the second polynomial that best fitted the data (in
a least-squares sense). Error bars represent SEM. See Table 1 for statistics.
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can develop over time (Padoa-Schioppa, 2009; Kobayashi
et al., 2010). To address this possibility, we repeated the
analysis of the current trial data while covarying out the
previous trial condition. Again, we found an advantage of
the full divisive normalization model over all the other mod-
els, as well as a relatively better fit for the dual-alternative
experiment compared with the single-alternative experiment
(data not shown for succinctness). Thus, recent trial history
could not account for our findings.

Model correlation between experiments
Pearson product-moment correlation coefficients served

as secondary measures of model fit to evaluate the relation
between each of the four models and the hemodynamic
data. We assessed the differences between the correlation
coefficients in the two experiments using two-sample Kol-
mogorov–Smirnov tests and illustrated them using kernel
smoothing function estimates. No significant differences
were found between the correlation coefficients of the con-
texts (low risk and low EV, high risk and low EV, low risk and
high EV, high risk and high EV); therefore results were aver-
aged over all contexts.

As expected, model 4 (full divisive normalization model) over-
all correlated more strongly with the observed data in both
experiments compared with models 1–3 (difference model,
basic divisive normalization model, and enhanced divisive nor-
malization model; Fig. 6, left). Considering the comparison
between experiments, the dual-alternative experiment data
correlated more strongly with model 4 compared with the
single-alternative experiment data (over all time intervals: p �
0.001; peak response, 4 s after alternatives onset: p � 0.033;
Fig. 6, right). Together, the data supported our previous obser-
vations that the full divisive normalization model (model 4) fitted
best to the hemodynamic responses, and supported that
working memory load reduced model fit.

Model parameters
As described in Eq. 4, the full divisive normalization

model (model 4) involved three parameters, the maximum
activity Amax, the response slope �, and the baseline
activity �. To analyze the fitted parameters of model 4 in
more detail, their context- and experiment-dependent dif-
ferences were assessed with an ANOVA (Fig. 7; Table 2).

Table 1. P-values of slope differences, Study 1
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RT 

D
ua

l 

low risk & low EV 0.517 0.764 0.517 1.000 0.585 1.000 0.776
low risk & high EV 0.517 NaN 1.000 1.000 0.855 1.000 0.281 1.000
high risk & low EV 0.764 1.000 NaN 1.000 0.968 1.000 0.512 1.000
high risk & high EV 0.517 1.000 1.000 NaN 0.854 1.000 0.281 1.000

Si
ng

le
 low risk & low EV 1.000 0.855 0.968 0.854 NaN 0.893 0.986 0.971

low risk & high EV 0.585 1.000 1.000 1.000 0.893 NaN 0.338 1.000
high risk & low EV 1.000 0.281 0.512 0.281 0.986 0.338 NaN 0.529
high risk & high EV 0.776 1.000 1.000 1.000 0.971 1.000 0.529 NaN

Choice 

D
ua

l 

low risk & low EV 0.001 0.997 0.000 1.000 0.002 0.891 0.000
low risk & high EV 0.001 NaN 0.000 0.014 0.001 1.000 0.138 0.019
high risk & low EV 0.997 0.000 NaN 0.000 1.000 0.000 0.485 0.000
high risk & high EV 0.000 0.014 0.000 NaN 0.000 0.015 0.000 1.000

Si
ng

le
 low risk & low EV 1.000 0.001 1.000 0.000 NaN 0.001 0.812 0.000

low risk & high EV 0.002 1.000 0.000 0.015 0.001 NaN 0.157 0.020
high risk & low EV 0.891 0.138 0.485 0.000 0.812 0.157 NaN 0.000
high risk & high EV 0.000 0.019 0.000 1.000 0.000 0.020 0.000 NaN

∆[tHb] 

D
ua

l 

low risk & low EV 0.010 0.040 0.000 0.000 0.003 0.009 0.000
low risk & high EV 0.010 1.000 0.045 0.062 0.284 0.006 0.157 0.000
high risk & low EV 0.040 0.045 1.000 0.000 0.021 0.001 0.015 0.000
high risk & high EV 0.000 0.062 0.000 1.000 0.674 0.657 0.964 0.099

Si
ng

le
 low risk & low EV 0.000 0.284 0.021 0.674 1.000 0.506 0.854 0.229

low risk & high EV 0.003 0.006 0.001 0.657 0.506 1.000 0.440 0.612
high risk & low EV 0.009 0.157 0.015 0.964 0.854 0.440 1.000 0.264
high risk & high EV 0.000 0.000 0.000 0.099 0.229 0.612 0.264 1.000

P-values context-dependent differences (top left/bottom right quadrants of groups of 8 rows and 8 columns) and dual-alternative vs. single-alternative experi-
ment differences (top right/bottom left quadrants) in regression coefficients relating RT, choice, and �[tHb] to safe values in each context, assessed using
ANOVA with Bonferroni correction on the group level. Significant differences are bold (p � 0.05). See Fig. 3 for illustration.
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For this analysis, all regressions were run separately for
each context.

Regarding the maximum activity (Amax) parameter, re-
sults showed context-dependent effects (main effect of
context, F � 24.690, p � 0.001) in both the dual-
alternative (F � 16.307, p � 0.001) and single-alternative
(F � 10.376, p � 0.001) experiments. There were no
significant differences between experiments or an inter-
action of experiment with context (main effect of experi-
ment F � 0.807, p � 0.370; interaction context �
experiment, F � 0.773, p � 0.510). Regarding the re-
sponse slope parameter �, results were similar, with
context-dependent effects (main effect of context, F �
5.181, p � 0.002) in both the dual-alternative (F � 2.842,
p � 0.040) and single-alternative (F � 2.669, p � 0.049)
experiments, but no effects involving experiments (main
effect of experiment, F � 0.079, p � 0.778; interaction
context � experiment, F � 0.340, p � 0.797). Together,
these results suggest that greater maximal activity (Amax)

and steeper response slopes (�) explained the context-
dependent hemodynamic differences in low- versus high-
risk contexts.

Regarding the � parameter, results showed no context-
dependent effects (main effect of context, F � 1.496, p �
0.216; dual-alternative, F � 2.262, p � 0.084; single-
alternative, F � 0.097, p � 0.962). However, there was a
significant difference between experiments indicating a
lower baseline parameter in the dual- compared with
single-alternative experiment (main effect of experiment,
F � 11.044, p � 0.001; interaction context � experiment,
F � 0.617, p � 0.604). Thus, differences in baseline
pooled activity explained hemodynamic differences be-
tween experiments.

Taking all parameters together, these effects resulted in
a significant context- and experiment-dependent differ-
ence of the predicted background activity (ABackground) as
represented by the ratio (Amax � �/�; main effect of con-
text, F � 7.473, p � 0.001; main effect of experiment, F �
7.951, p � 0.005; interaction context � experiment, F �
4.126, p � 0.007). Thus, the suppression of background
activity (with baseline pooled activity being the critical
parameter) was significantly reduced in the single- com-
pared with the dual-alternative experiment, which re-
duced the capacity for divisive normalization in PFC.

Study 2
In Study 2, we assessed replicability of Study 1 and

tested whether independent variation of working memory
load in a secondary task had effects on neural value
adaptation similar to having to remember one choice
alternative. Study 2 (Fig. 8) revealed three main points.
First, the behavioral data of Study 2 replicated those of
Study 1 in that both RT (load, F � 2.291, p � 0.134;
context, F � 9.407, p � 0.003; experiment, F � 0.844,
p � 0.361) and choice behavior (load, F � 0.442,
p � 0.508; context, F � 25.609, p � 0.001; experiment,
F � 3.816, p � 0.058) revealed context-dependent ef-
fects, but no load- or experiment-dependent effects.

Second, the hemodynamic data also replicated those of
Study 1 in that the PFC exhibited monotonic response
increases with increasing safe values. These response
increases occurred in both experiments of Study 2 and,
just as in Study 1, were again steeper for the dual-
alternative experiment than the single-alternative experi-
ment (Fig. 8), indicating that context-related working
memory demands reduce adaptive coding. In particular,
slopes were again dependent on the risk context, with
low-risk contexts eliciting steeper responses compared with
high-risk contexts (Fig. 8), and the two divisive normalization
parameters determining risk context-dependent differences
were maximal activity (Amax) and response slopes (�;
Tables 3 and 4).

Third, after addition of the context-independent working
memory load, neural activity in the dual-alternative experi-
ment resembled neural activity in the single-alternative ex-
periment. Thus, irrespective of whether working memory
load was context-related (single-alternative experiment with
high context-dependent working memory load) or not (dual-
alternative experiment with no context-dependent working

Figure 4. Adaptive coding predicted by different adaptive coding
models. Shown are predictions of neural activation in the dual-
alternative experiment, based on theoretical parameter values as
adapted from the models described by Louie et al. (2011), i.e.,
the difference model (model 1), the basic divisive normalization
model (model 2), the enhanced divisive normalization model
(model 3), and the full divisive normalization model (model 4).
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memory load), it reduced adaptive value coding (Fig. 8). As in
Study 1, reduced normalization was associated with in-
creased baseline pooled activity (�), which was the main
critical parameter determining working memory–dependent
differences in the steepness of response slopes, for both
context-related and context-independent working memory
load (Tables 3 and 4).

Discussion
The present two studies examined the effect of working

memory load on adaptive coding in the PFC using value
normalization models in a risky decision-making context.
We observed that the PFC encoded safe values in a
context-dependent manner, such that hemodynamic re-
sponse slopes were steeper for low-risk than high-risk
contexts. Importantly, this pattern was significantly en-
hanced when risky alternatives were visually presented
rather than maintained in working memory. Our results
demonstrate that the PFC not only adaptively encodes

value-related information in a context-dependent manner,
but also that adaptation interacts with working memory
demands that increase baseline activity and thereby re-
duce PFC capacity to normalize neural activity.

We formally compared four competing models of neural
value adaptation (Louie et al., 2011). Please note that not
all of these models used normalization to account for
neural adaptation. Our findings suggest that the full divi-
sive normalization model best accounts for neural value
adaptation in PFC, even when penalizing for model com-
plexity. With regard to that model, we show that working
memory demand reduces capacity to suppress back-
ground activity, and we thereby provide a mechanistic
account of how working memory interferes with value
adaptation. Moreover, this finding suggests that partici-
pants actively maintained information in working memory
throughout task blocks instead of selectively retrieving the
information when it was needed.

Figure 5. Model comparison. Plots illustrating the time-resolved AIC-differences (�AIC) averaged over all channels between models 1–4,
separately for the two experiments. Positive values correspond to a relatively better fit of the last-named model. Model 4 (full divisive
normalization model) showed a relatively better fit compared with the other models, i.e., the difference model (model 1), the basic divisive
normalization model (model 2), and the enhanced divisive normalization model (model 3). Moreover, model 4 provided a better overall fit
around the canonical hemodynamic response peak (4 s) in the dual- compared with the single-alternative experiment.
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Our data show that divisive normalization can be ap-
plied to risky decision-making in humans, further expand-
ing the already wide range of applications of the model. In
humans, divisive normalization has been applied not only
to behavioral data on working memory (Bays, 2014), facial
attractiveness processing (Furl, 2016), visual search (Mi-
coni et al., 2015), visual masking (Tsai et al., 2012), and
interocular suppression (Li et al., 2015), but also using
fMRI with visual perception (Zhou et al., 2017), cross-
orientation suppression (Brouwer and Heeger, 2011), and
somatosensory processing (Brouwer et al., 2015). In the
domain of value coding, divisive normalization has been
applied less frequently, but general adaptation to context
has been shown with fMRI in a variety of regions, includ-
ing lateral (Akitsuki et al., 2003; Nieuwenhuis et al., 2005;
Burke et al., 2016; Kirschner et al., 2016) and medial
prefrontal cortex (Akitsuki et al., 2003; Nieuwenhuis et al.,
2005; Elliott et al., 2008; Cox and Kable, 2014; Palminteri
et al., 2015; Burke et al., 2016). In principle, divisive

normalization could have been applied in many of these
studies too. In any case, the wide range of applications
reflects the notion that divisive normalization is a general
organizing principle that captures adaptation in the entire
neural machinery. The present study goes beyond that pre-
vious work in that we not only address divisive normalization
with regard to the normalizing effects of risk contexts on the
processing of safe values but also explore the impact of
additional working memory demands. Methodologically, us-
ing fNIRS extends the examination of normalization using a
different neuroimaging technique in humans.

RT and choice behavior
Although RT and choice behavior in the two studies

were sensitive to context, in contrast to PFC responses,
they showed no effects of adaptation or working memory
load. Previous research (Louie et al., 2013) revealed that
divisive normalization can have behavioral effects. Differ-
ences in experimental paradigms may explain why the

Figure 6. Correlation between models and observed data. Kernel smoothing function estimate (KS-density) of the correlation
coefficients between the four predicted models and the observed data in the two experiments. Significant differences between the
dual- and single-alternative experiments were assessed using two-sample Kolmogorov–Smirnov test (KS-statistic, p value), consid-
ering all 40 sliding time intervals (left) and only the peak response (right).
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previous work was more sensitive for behavioral adapta-
tion effects than our studies. Specifically, Louie et al.
(2013) used choice situations with three alternatives and
investigated the effect of varying the value of the least
preferred alternative on choice between the two other,
more preferred, alternatives. Their design therefore varied
value within choice sets and examined choice behavior as
a function of that manipulation, which changed the Vs
(i.e., the alternative values) that entered the denominator
of the normalization equations (see “Model predictions” in
Data Analysis). In contrast, we used choice situations with
only two alternatives. Thus, in our design, value varied
across rather than within choice sets, and changes in the Vs
were associated with different choice alternatives, which
may explain why our design was less sensitive to behavioral
adaptation effects. In any case, the fact that fNIRS picked up
solid neural adaptation effects in the PFC in the absence of
behavioral adaptation effects suggests that the neural find-
ings cannot be explained by simple motor confounds re-
flecting behavioral adaptation effects.

PFC encodes context-dependent value normalization
The PFC exhibited monotonic response increases as

the value of safe alternatives increased (“Hemodynamic
responses” in Results). These response increases were
independent of actual choice and consistent with previ-
ous reports of PFC coding the value of safe alternatives

(Tobler et al., 2009). The present data thus show that not
only fMRI but also fNIRS can detect safe value coding in
PFC hemodynamic responses.

Importantly, PFC responses showed significant adap-
tation of safe value signals driven by the risk context. In
both experiments (and in both studies 1 and 2), we ob-
served that the hemodynamic responses increased
monotonically but differentially depending on the risk con-
text (Fig. 3). In other words, a given increase in the mag-
nitude of the safe alternative was represented by larger
increases in PFC activity in low-risk than in high-risk
contexts. Thus, it appears that the PFC encodes value not
in an absolute manner (i.e., as it would have been pre-
dicted by the difference model or the basic divisive nor-
malization model) but in a divisively normalized manner
(i.e., as predicted by the enhanced and the full divisive
normalization models; Louie et al., 2011; Carandini and
Heeger, 2012). The two critical parameters determining
these significant context-dependent differences were
maximum pooled activity (Amax) and response slope (�;
Fig. 7; Table 2). Thus, the adaptation to risky contexts can
be captured with distinct parameters of normalization
models originally described in the visual system.

PFC encodes presence versus absence of risk context
Adaptive value normalization in PFC differentiated be-

tween the presence and absence of the risky alternatives.

Figure 7. Model parameters. We estimated the parameters for model 4, where Amax was the maximum activity, � was the response
slope, and � was the baseline parameter. The ratio (Amax � �/�) of the three parameters can be summarized as the predicted
background activity (ABackground). See Table 2 for statistical analysis using ANOVA.
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In line with our hypothesis derived from the animal litera-
ture on divisive normalization (Heeger, 1992; Carandini
et al., 1997; Cavanaugh et al., 2002; Louie et al., 2011),
this differentiation appeared to be related to reduced
suppression of background activity (ABackground). The crit-
ical parameter determining experiment-dependent differ-
ences in the steepness of response slopes (in both
studies 1 and 2) was baseline pooled activity (�; Fig. 7;
Table 2). Accordingly, presented risk (dual-alternative ex-
periment) displayed robust context-dependent normaliza-
tion as predicted by a full divisive normalization model
with low baseline pooled activity. In contrast, remem-
bered risk (single-alternative experiment) reduced the
steepness of hemodynamic response slopes as predicted

by the full divisive normalization model with high baseline
pooled activity (Fig. 4). Entering these distinct values of
baseline pooled activity in the fits of the full normalization
model to the observed data fully captured the differences
in slope steepness between the dual- versus the single-
alternative presentation.

In other words, prefrontal hemodynamic activity ap-
peared to integrate context-dependent information with
the activity of neighboring prefrontal regions as captured
by (ABackground), a mechanism similar to that described in
earlier work on in- and outside receptive field effects in
sensory systems (Heeger, 1992; Carandini et al., 1997;
Cavanaugh et al., 2002; Louie et al., 2011; Carandini and
Heeger, 2012).

Table 2. Comparison of model parameters, Study 1

Model parameter  Effect Factor F p-value 

Amax 

Dual-alterna�ve Context 16.307 0.000 
  Context: low vs. high EV 3.906 0.050 
  Context: low vs. high risk 42.916 0.000 
Single-alterna�ve Context 10.376 0.000 
  Context: low vs. high EV 9.562 0.002 
  Context: low vs. high risk 18.661 0.000 
Main effect Context 24.690 0.000 
Main effect Experiment  0.807 0.370 
Interac�on effect Context * Experiment 0.773 0.510 

Sigma (σ) 

Dual-alterna�ve Context 2.842 0.040 
  Context: low vs. high EV 0.001 0.976 
  Context: low vs. high risk 8.430 0.004 
Single-alterna�ve Context 2.669 0.050 
  Context: low vs. high EV 1.815 0.180 
  Context: low vs. high risk 6.038 0.015 
Main effect Context 5.181 0.002 
Main effect Experiment  0.079 0.778 
Interac�on effect Context * Experiment 0.340 0.797 

Beta (β) 

Dual-alterna�ve Context 2.262 0.084 
  Context: low vs. high EV 4.647 0.033 
  Context: low vs. high risk 2.093 0.150 
Single-alterna�ve Context 0.097 0.962 
  Context: low vs. high EV 0.211 0.646 
  Context: low vs. high risk 0.059 0.809 
Main effect Context 1.496 0.216 
Main effect Experiment 11.044 0.001 
Interac�on effect Context * Experiment 0.617 0.604 

ABackground 

 (Amax * β / σ) 

Dual-alterna�ve Context 3.957 0.010 
  Context: low vs. high EV 10.554 0.001 
  Context: low vs. high risk 0.074 0.786 
Single-alterna�ve Context 6.557 0.000 
  Context: low vs. high EV 4.557 0.034 
  Context: low vs. high risk 9.108 0.003 
Main effect Context 7.473 0.000 
Main effect Experiment 7.951 0.005 
Interac�on effect Context * Experiment 4.126 0.007 

ANOVA using the within-subject factor context and the between-subject factor experiment to assess the differences in the model parameters estimated in
model 4, where Amax was the maximum activity, � was the response slope, and � was the baseline parameter. The ratio (amax � �/�) of the three parameters
can be summarized as the predicted background activity (ABackground). Significant differences are bold (p � 0.05). See Fig. 7 for illustration.
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Relation to attention and cognitive control
The PFC has been associated with a variety of functions

other than working memory, such as attention and cog-
nitive control (Duncan, 2001), which could potentially ex-
plain the presently observed normalization effects on
value coding. Behaviorally, attention is typically associ-
ated with faster RT, and cognitive control is typically
associated with slower RT (Nieuwenhuis and de Kleijn,
2013). Given that we found no significant RT differences
between high and low working memory demand, the
behavioral data provide little support for explanations in
terms of attention or cognitive control.

Conversely, the two studies provide independent evi-
dence that working memory load can affect neural value
adaptation. In particular, a plausible interpretation for both
studies might be that higher task-related or secondary
working memory load had been processed in the prefron-
tal cortex, which amplified background activity, and sub-
sequently resulted in a diminished suppression of the risk
context-dependent adaptive steepening effects. A possi-
ble functional implication of lower background activity

when working memory load is low may be that inhibitory
mechanisms are working in the prefrontal network that
preserve full normalization. In contrast, the reduced sup-
pression of background activity when working memory
load was high may suggest that the additional mainte-
nance mechanisms diminished full normalization capacity
through reduced baseline suppression. Speculatively, it is
conceivable that the combination of high working memory
capacity (Gathercole, 1999; Fry and Hale, 2000; Luna
et al., 2004; Westerberg et al., 2004) and the ability to
ignore interference (Tipper et al., 1989; Dempster, 1992;
Ridderinkhof et al., 1997) facilitates divisive normalization.

Adaptation studies often use multiple stimuli or alterna-
tives. The fact that the findings of Study 1 converged with
those of Study 2 suggests that the more unusual presen-
tation format of the single-alternative experiments is un-
likely to explain the effects and that working memory
load is the more relevant factor. Specifically, increasing
working memory load through an independent second-
ary task in Study 2 reduced neural adaptation also in
the more typical dual-alternative layout. In line with this

Figure 8. Slopes in Study 2. Top: RT slopes. Plots illustrate the addition of context-independent working memory load to the risk
context and decision-related working memory dependence of RT, separately for the dual- and single-alternative experiments. Middle:
Choice slopes. Plots illustrate the addition of context-independent working memory load to the risk context and decision-related
working memory dependence of risky choice, separately for the dual- and single-alternative experiments. Bottom: �[tHb] slopes. Plots
illustrate the addition of context-independent working memory load to the risk context and decision-related working memory
dependence of �[tHb] response slopes averaged over all channels, separately for the dual- and single-alternative experiments. Note
that all slopes are shown in terms of the coefficients for the second polynomial that best fitted the data (in a least-squares sense). Error
bars represent SEM. See Tables 3 and 4 for statistics.
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finding, neural adaptation effects with single alterna-
tives are not unprecedented (Tobler et al., 2005; Kirsch-
ner et al., 2016).

To apply previous work in the animal visual system
(Louie et al., 2011), we treated the changing safe values in
the current experiments as analogous to the changing
visual stimuli inside the receptive field, whereas the risky
alternatives were considered to be more constant, similar
to extrareceptive field stimuli. However, this analogy
should be handled very carefully because, in contrast to
the visual experiments, the current experiments did not
allow for a clear separation of in- and outside receptive
field effects, as the safe and risky alternatives were inher-
ently coupled in all trials (i.e., safe values were never
shown without a presented or remembered risk context).
Furthermore, whereas size and locations of receptive
fields in visual cortex have been well defined (Spillmann,
2014; Spillmann and Dresp-Langley, 2015), receptive
fields in prefrontal cortex are less well defined and involve
complex combinations of visual, auditory, motor, mem-
ory, and emotional inputs (Rainer et al., 1998; Otani, 2007;
Coward, 2013; Bullock et al., 2015).

Taken together, our results show that there is significant
interaction between adaptive value coding and working
memory. Although it is known that rewards can enhance
access into working memory (Wallis et al., 2015), resulting
in a reward-driven encoding bias, the opposite, i.e., a
memory-driven value coding bias, has been considered
primarily for episodic memory (Gershman and Daw,
2016). The current studies show that prefrontal suppres-
sion of background activity can be impaired by high
working memory demands, resulting in diminished nor-
malization. It remains to be seen whether reduced nor-
malization capacity can explain noisier choice behavior,
e.g., under dual-task conditions. Although we did not
observe normalization-related changes in behavior with
our relatively modest demand on working memory, one
might expect that behavioral changes exist in patient
populations. Indeed, lateral prefrontal value signals adapt
less well in patients with schizophrenia compared with
healthy controls (Kirschner et al., 2016). It is conceivable
that tonic neurotransmitter levels (such as dopamine) may
mediate between the working memory mechanisms nec-
essary for assessing background reward contexts and

Table 3. P-values of slope differences, Study 2
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RT 

D
ua
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low risk (low load) 0.426 0.995 0.351 1.000 0.263 0.368 0.289
high risk (low load) 0.426 NaN 0.874 1.000 0.414 1.000 1.000 1.000
low risk (high load) 0.995 0.874 NaN 0.815 0.995 0.721 0.830 0.753
high risk (high load) 0.351 1.000 0.815 NaN 0.340 1.000 1.000 1.000

Si
ng

le
 low risk (low load) 1.000 0.414 0.995 0.340 NaN 0.254 0.357 0.280

high risk (low load) 0.263 1.000 0.721 1.000 0.254 NaN 1.000 1.000
low risk (high load) 0.368 1.000 0.830 1.000 0.357 1.000 NaN 1.000
high risk (high load) 0.289 1.000 0.753 1.000 0.280 1.000 1.000 NaN

Choice 

D
ua

l 

low risk (low load) 0.370 0.748 0.356 0.997 0.070 0.966 0.088
high risk (low load) 0.370 NaN 0.007 1.000 0.815 0.993 0.945 0.997
low risk (high load) 0.748 0.007 NaN 0.006 0.303 0.000 0.156 0.001
high risk (high load) 0.356 1.000 0.006 NaN 0.802 0.994 0.939 0.997

Si
ng

le
 low risk (low load) 0.997 0.815 0.303 0.802 NaN 0.319 1.000 0.372

high risk (low load) 0.070 0.993 0.000 0.994 0.319 NaN 0.529 1.000
low risk (high load) 0.966 0.945 0.156 0.939 1.000 0.529 NaN 0.591
high risk (high load) 0.088 0.997 0.001 0.997 0.372 1.000 0.591 NaN

∆[tHb] 

D
ua

l 

low risk (low load) 0.001 0.001 0.000 0.032 0.025 0.001 0.001
high risk (low load) 0.001 0.877 0.681 0.232 0.276 0.977 0.907
low risk (high load) 0.001 0.877 0.571 0.299 0.350 0.854 0.786
high risk (high load) 0.000 0.681 0.571 0.108 0.133 0.702 0.768

Si
ng

le
 low risk (low load) 0.032 0.232 0.299 0.108 0.917 0.221 0.190

high risk (low load) 0.025 0.276 0.350 0.133 0.917   0.263 0.227
low risk (high load) 0.001 0.977 0.854 0.702 0.221 0.263   0.930
high risk (high load) 0.001 0.907 0.786 0.768 0.190 0.227 0.930 

P-values for load- and risk-dependent differences (top left/bottom right quadrants of groups of 8 rows and 8 columns) and dual-alternative vs. single-alterna-
tive experiment differences (top right/bottom left quadrants) in regression coefficients relating RT, choice, and �[tHb] to safe values in each context, assessed
using ANOVA with Bonferroni correction on the group level. Significant differences are bold (p � 0.05). See Fig. 8 for illustration.
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concurrent accurate neuronal reward coding, a process
that may be affected also in patients with addiction
(Schultz, 2011).

Methodological limitations
Task design may affect the exact nature of neural ad-

aptation effects. For example, some previous studies
focused on how neural signals encoding the value differ-
ence between two more preferred alternatives were af-
fected by variations of a third, irrelevant, alternative. One
such study (Chau et al., 2014) used fMRI and suggested
that prefrontal context effects may not adhere to princi-
ples of divisive normalization. Specifically, it reported that
value difference signals in the ventromedial PFC de-
creased in the presence of low-value third alternatives,
with neural discrimination between the more preferred
alternatives becoming harder. However, this finding con-

trasts with that of another study (Louie et al., 2013) that, in
line with divisive normalization, showed that value differ-
ence signals increased in the presence of a low-value
alternative. The designs of these two studies and of the
present study differed in several respects, which could
explain the differences. Specifically, the use of time pres-
sure for decisions (Chau et al., 2014) could affect adap-
tation of decision-value signals differently than that of
stimulus value signals, and the use of third alternatives
(Chau et al., 2014; Louie et al., 2013) could facilitate the
behavioral expression of adaptation as discussed above.
Together, details in task design are important to consider
when assessing neural adaptation effects.

It should be noted that the present model equations as
adapted from Louie et al. (2011) were originally designed to
predict the suppression of individual neurons based on a

Table 4. Comparison of model parameters, Study 2

Model parameter  Effect Factor F p-value 

Amax 

Dual-alterna�ve 
load  10.563 0.002 
risk  1.412 0.240 

Single-alterna�ve 
load 17.526 0.000
risk  3.946 0.052 

Main effect 
load  25.950 0.000 
risk 5.324 0.023
experiment 1.237 0.269 

Interac�on effect 
load * risk 3.910 0.051 
load * experiment 0.379 0.539 
risk * experiment 0.003 0.957

Sigma (σ) 

Dual-alterna�ve 
load  1.168 0.285 
risk  0.121 0.730 

Single-alterna�ve 
load  3.125 0.083 
risk 0.187 0.667

Main effect 
load  3.206 0.076 
risk  0.268 0.606 
experiment 0.315 0.576 

Interac�on effect 
load * risk 0.035 0.851
load * experiment 0.004 0.948 
risk * experiment 0.007 0.933 

Beta (β) 

Dual-alterna�ve 
load 8.550 0.005
risk  0.176 0.677 

Single-alterna�ve 
load  29.401 0.000 
risk  2.096 0.153 

Main effect 
load 27.369 0.000
risk  1.619 0.206 
experiment 4.221 0.042 

Interac�on effect 
load * risk 0.106 0.746 
load * experiment 0.041 0.840
risk * experiment 0.247 0.620 

Abackground 
(Amax * β / σ) 

Dual-alterna�ve 
load  5.759 0.020 
risk  0.326 0.570 

Single-alterna�ve 
load 15.685 0.000
risk 1.369 0.247

Main effect 
load  15.983 0.000 
risk  1.333 0.251 
experiment 4.843 0.030 

Interac�on effect 
load * risk 0.083 0.773
load * experiment 0.026 0.873 
risk * experiment 0.014 0.907 

ANOVA with within-subject factors Load (risk- vs. context-dependent demand on working memory) and context (low- versus high-risk), and between-subject
factor experiment (dual- vs. single-alternative) to assess differences in the model 4 parameters (Amax maximum activity, � semisaturation, � baseline parame-
ter). The ratio (amax � �/�) can be summarized as predicted background activity (Abackground). Significant effects are bold (p � 0.05).
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local network of neurons with receptive fields that either
included or did not include a target. It may thus be asked
whether the same equations can be applied to low-
resolution fNIRS data that sum over metabolic activity within
a large network of neurons, including both excitatory and
inhibitory activity, presumably mediating the normalization.
The translation is certainly not one-to-one, but it is conceiv-
able that fNIRS is sensitive to the balance of excitation and
inhibition within the cortex. This balance was originally
thought to maintain the functional activity of tightly corre-
lated cortical areas (Shadlen and Newsome, 1994; van
Vreeswijk and Sompolinsky, 1996; Shu et al., 2003; Haider
et al., 2006). Under certain forms of excitation/inhibition
balance, average population activity has been recently sug-
gested to scale with normalization-mediated changes in
individual excitatory neuron firing rates (Rubin et al., 2015).
This suggestion is in line with related computational work
(Louie et al., 2014) using a simple differential equation model
of a value normalization circuit, with both excitatory and
inhibitory neurons. In particular, this work revealed that ex-
citatory and inhibitory rates (at equilibrium) move together,
implying that population-based measures such as fMRI or
fNIRS could in principle be sensitive to inhibition-mediated
normalized value coding.

Furthermore, it is conceivable that the present model
specifications are rather imprecise. In the equations of
divisive normalization we used (Louie et al., 2011), the
value of the risky alternative is fixed to the expected value
or average of the two outcomes, and the effects of ma-
nipulating risk context and working memory load were
explained by the change of the fitted free parameters
(maximal activity, response slope, and baseline activity).
Specifically, because the risk context directly controls the
composition of the values of the risky alternative, it is
possible that the representation of the value of the risky
alternative might be changed in different risk contexts
(e.g., through additional noise). However, it is worth noting
that the converging findings of Study 1 and Study 2
suggest that, at least for working memory load, these
concerns seem to play a subordinate role. Still, future
research may want to consider a wider range of model
specifications.

Moreover, the potential cortical sources of the ob-
served fNIRS signals are worth considering. We did not
find significant differences in model fit between channels,
which is in line not only with adaptation being a general
principle that applies to both medial and lateral PFC but
also with the low spatial resolution of fNIRS. However, it
should be kept in mind that current evidence about pre-
frontal reward coding giving rise to within-context adap-
tation is limited even at the level of single neurons.
Previously, we have shown with both fMRI (Tobler et al.,
2009) and fNIRS (Holper et al., 2014) that lateral prefrontal
activations increase with increasing safe rewards and with
increasing subjective value of risky options. Relatedly, a
larger number of single lateral prefrontal neurons respond
to safe reward than to punishment (Kobayashi et al.,
2006). However, the relative proportion of risk and safety
coding neurons in different prefrontal regions is largely
unknown, although single orbitofrontal cortex neurons

appear to code value more commonly than objective risk
(O’Neill and Schultz, 2010). Conversely, single anterior
cingulate neurons represent reward probability to a
greater extent than lateral prefrontal and orbitofrontal
neurons (Kennerley et al., 2011). Yet, it remains unclear
whether these relations hold also for other prefrontal re-
gions and, if so, whether they result in different adaptation
patterns. This issue is relevant because divisive value
normalization is meant to apply to signals encoding the
value of both safe and risky options.

In line with the single neuron findings mentioned above,
our previous fMRI studies revealed objective risk signals
in anterior cingulate cortex (Burke and Tobler, 2011) and
subjective value signals in orbitofrontal cortex (Tobler
et al., 2007). Still, relatively little is known about more
dorsal prefrontal cortex, which we measured in the pres-
ent fNIRS study. Neurons in supplementary motor regions
show sustained prospective activity encoding the predic-
tion of safe reward (Amador et al., 2000), whereas the
well-known sustained retrospective activities of dorsolat-
eral (e.g., Levy and Goldman-Rakic, 2000) as well as
dorsomedial (e.g., Kaminski et al., 2017) prefrontal neu-
rons represent the contents of working memory. In sum, it
seems clear that the prefrontal regions we investigated
encode the value at least of safe rewards, but more
studies are needed to investigate the presence and rela-
tive prevalence of risk coding and the potential effects for
neural adaptation. Importantly, our findings go beyond
simple detection of neural value adaptation by character-
izing one plausible implementation mechanism through
formal comparison of competing models of value adap-
tation.

Conclusion
The present studies showed that in a risky decision-

making context adaptive value coding in the PFC can be
captured with divisive normalization models. In both stud-
ies, adaptation was more pronounced during low-risk
compared with high-risk contexts, and when working
memory load was low compared with when it was high.
These effects were reflected in increased background
activity (reduced background suppression) when working
memory load was high. Our data reinforce the ubiquity of
adaptive coding, elucidate its dynamic nature, and reveal
that subtle changes in working memory load can influence
the degree of neural value adaptation.
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