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Christian Machens

June 2016



Declarations

Acknowledgements
I would like to thank Sophie and Christian who have been great mentors. It was a
privilege to spend time with them and their teams in the Group for Neural Theory
in Paris and at the Champalimaud Neuroscience Programme in Lisbon. Teamwork
made the daily work delightful. Special thanks to Allan, Gonçalo and Nuno.
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Chapter 1

Introduction

1.1 Background

A crucial step toward understanding the neurobiological basis of information process-
ing is to bridge the microscopic level of single neurons with the macroscopic level of
cognition. To do so, systems neuroscience builds on the convergence of molecular and
optical tools [1] with transgenic mouse lines and quantitative behavioral tasks [2]. To
establish causal relationships, it is necessary to perturb and manipulate neural circuits
in order to reveal their structure and function. Observation only does not su�ce to
understand the link between patterns of action potentials and animal behavior. This
reverse engineering approach searches for the underlying principles of neural design
[3] that give rise to the brain as we know it. Importantly, these principles are shaped
by metabolic constraints

The team of Karel Svoboda on the Janelia Research Campus successfully devel-
oped this method for the study of mouse motor cortices. In a series of studies [4] [5],
they have been probing the mouse Anterior Lateral Motor (ALM) cortex, a region
that is known to play a role in sensory guided movements. Doing so, they uncovered
an intriguing robustness of neuronal dynamics during planning [6]. We will start by
introducing these experiments, and then we will motivate a theoretical approach that
can suggest underlying mechanisms for the results.

1.2 Experiment

1.2.1 Behavioral task

Data was acquired during a whisker-based object location discrimination task that is
composed first of sampling epoch (1.3 seconds), then of a delay epoch (1.3 seconds),
and finally of a response epoch that starts at an auditory go cue. During sampling,
head-fixed animals are presented with a pole that can appear either in a posterior or
an anterior position. Depending on the stimulus location, animals are expected to
lick right or left. Although quite advanced for mice, this perceptual decision making
task is learnt in less than a week and animals reach a performance plateau of 80%.
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1.2.2 Neuronal recordings

The gold standard of neural recordings in animal performing advanced task has been
electro-physiology in the head fixed behaving monkey. One example of this is the
data acquired by Ranulfo Romo in monkey performing a flutter discrimination task
[7]. By recordings several brain regions while the animal performed the same task,
results could be compared. Similarly, in the set of experiments we are concerned with,
the mouse cortex has been consistently investigated while the animal performed the
previously described task. In these head-fixed mouse preparations, experimentalists
could take advantage from the genetically targeted sensors and switches to measure
and manipulate activity in vivo.

Neurons recorded in ALM have a very diverse selectivity. Some respond in advance
of movements to the contralateral side and others respond in advance of movements
to the ipsilateral side. In that sense, ALM is analogous to pre-motor cortex in the
primate pre-frontal cortex.

Interestingly, these recordings showed that a small, sparse subpopulation of
pyramidal cells seem to code for object location. These are highly informative
neurons that spike overall more than the others. Such cells are already present in a
naive mouse, i.e.one that has not yet learnt the task.

1.2.3 Optogenetic manipulations

Mouse cre-lines allow detailed circuit analysis by providing genetic functional ac-
cess to specific cells. The manipulation we are most interested is the unilateral
photostimulation of channelrhodopsin-2 in GABAergic interneurons, a perturbation
that indirectly inhibits pyramidal neurons. Laser light was shone during the delay
epoch and induced a systematic behavioral e↵ect. Performance was not randomly
decreased, a distinct ipsi-lateral bias in response. At first, it is not clear why
disruption of ALM on one side particularly a↵ects contra-lateral movements. This
result is surprising because neurons selective for each side are present in about equal
proportions in both hemispheres.

Most importantly, it was observed that if the perturbation occurs at the begin-
ning of the delay epoch, then performance is preserved and neuronal activity rapidly
catches up with the baseline trajectory. This robustness was not observed when both
hemispheres where disrupted. An additional set of experiment with corpus callosum
cut established that the contribution of the contra-lateral hemisphere is required for
this robustness to occur. This is depicted in figure 1.1.
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Figure 1.1: Robustness relies on inter-hemispheric cooperation. Top panel : after
unilateral inactivation of ALM, information about licking direction is restored. Middle
panel : after bilateral inactivation of ALM, information about licking direction is not
restored. Bottom panel : if the corpus callosum is cut, unilateral inactivation su�ces
to block the restoration of information. (Figure adapted from the commentary of
Byron M. Yu that accompanied the publication of the results [8]).

1.3 Theory

In order to provide analytical explanations for these experimental findings. We will
use a model that is as simple as possible, yet i) interesting, ii) understandable and
iii) plausible. Adopting a top-down approach, we will start with optimality principles
and derive the corresponding optimal network connectivity. If the model reproduces
experimental features, it will provide both a mechanistic explanations and testable
predictions. Here we will focus on circuit wiring patterns, but other components such
as synaptic plasticity and dendritic computations are also of great interest.

Although the world, our actions and experiences are essentially continuous, neu-
ronal populations essentially communicate via discontinuous spiking. Acknowledging
this fact, we will use recurrent spiking networks. More specifically we will present
an instantiation of the model developed by Sophie Denve, Christian Machens and
colleagues [9]. This work builds upon the theory of both e�cient coding [10] and
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balanced networks [11]. It is derived from an e�cient coding principle : networks
should reach the most metabolically e�cient representation of information.

Extending previous work [12], we will investigate the e↵ects of in silico equiva-
lents for optogenetic inactivation.Our objective is to study the robustness of neuronal
networks while they compute and thereby to better understand cortical circuits. As
discussed in [6], state of the art models failed to reproduce the experimental findings
previously described. Therefore, this master thesis is an occasion to probe the validity
of the framework.

All the code used to simulate the network and to generate the plots presented
here is available in a companion IPython Notebook document.
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Chapter 2

Methods

In this chapter, we describe the recurrent spiking network. The first paragraph of each
subsection provides a verbal description of the underlying ideas and it is accompanied
by a figure to visualize the geometrical interpretation of the model. Mathematical
details can be skipped on a first reading.

2.1 Derivation of the optimal network : coding

In this section, we largely follow the derivation of [13] and [14], but we expand the
explanations.

2.1.1 Auto-encoder network

The intuition behind the network of spiking neurons that we use comes from a simple
case. Imagine a scenario in which a neural network receives an input signal and
has to produce an output signal as close as possible to the input. Note that in the
machine learning literature, networks that learn to represent their input are called
auto-encoders. Their simple architecture can be used as a building block to construct
networks carrying other operations (for example : tracking some dynamics, or holding
short-term memory).

Because our modeled neurons communicate only through discrete events called
Action Potentials (or spikes), the performance on this task will be imperfect. Indeed a
smooth input signal will be approximated by a ”jumpy” process. Moreover, the e↵ect
of each discrete spike depends on the strength of the connection from the emitter to
the receiver neuron. This synaptic strength is represented by the weight of the edge
between each pair of units. Weights are values that can be positive, negative or null
corresponding respectively to excitatory connections, inhibitory connections and the
absence of connection.

Following on the objective described in the introduction, we want to build a func-
tional network that emits as few spikes as possible. To do so we have to determine
which is the optimal connectivity, which will be explained step by step in the next
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Figure 2.1: A recurrent neural network receiving an input x through the feed-forward
weights F. Units are coupled to one another by recurrent connections ⌦ (note that
we will add a second set of recurrent connections in 2.2). The output x̂ is readout
from the network activity through the decoding weights D.

sections. Then the spiking rule will be designed to let the network optimize over spike
times. The architecture of this recurrent network is depicted in 2.1.

2.1.2 Inputs and outputs

The recurrent network receives task-specific inputs and produces an approximation
of a specified target output. Inputs simulate the flow of information from sensory
regions and outputs are spikes transmitted to a downstream circuit where they will
elicit currents. The integration of the post-synaptic currents decays over time, lending
a large weight to the immediate time after the spike and sharply decreasing afterwards.
We will model this by adding an exponentially decaying current in the post-synaptic
neuron following each pre-synaptic spike. This characteristic shape, represented in
the next figure, is an approximation of the biophysical mechanisms occurring on the
post-synaptic membrane and their time constant.

These post-synaptic currents can also be interpreted as instantaneous firing rates.
Usually rates are computed by sliding a Gaussian window through the spike train.
Using an exponential kernel instead has the advantage of increasing the rate only
after each spike, thereby enforcing a strict causality of events. This operation, called
a convolution, results in a smoothed, or filtered, spike train.

The network receives a set of time-varying inputs c(t) = (c1 (t), ..., cj (t), ..., cJ (t)),
where J is the dimension of the input signal and cj (t) is the j th input. It then produces
spike o(t) = (o1 (t), ..., on(t), ..., oN (t)), where N is the dimension of the input signal.
The spike train of the n

th neuron is given by on(t) =
P

l �(t � t

n
l ), where {tnl } are

the spike times of that neuron. Throughout this document we will refer to these two
vector spaces respectively as the signal space (RJ) and the activity space (RN). In
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Figure 2.2: A spike train from a single model neuron (top), and the normalized
synaptic current rn that it generates (bottom)

figure 2.1 the signal space is outside the circle and the activity space inside it. The
connectivity matrices F and D make the transition between the two.

We furthermore define convolved versions of the input and output signals. The
instantaneous firing rate of neuron n is given by rn(t) := on(t)⇤h(t), where we assume
that h(t) is non-negative and is normalized by

R1
0 h(t)dt = 1. We chose to convolve

the spike train with an exponential filter, such that :

rn(t) := on(t) ⇤ e��dt =

Z 1

0

e

��dt
0
sk(t� t

0
)dt

0
,

in other words each spike contributes a decaying exponential kernel to the firing rate.
This operation produces a filtered spike train, which can also be captured by the

following di↵erential equation (in vector notation for the population) :

ṙ(t) = ��dr(t) + o(t) (2.1)

Similarly the filtered input signal, x(t), is given by

ẋ(t) = ��dx(t) + c(t), (2.2)

where the parameter �d controls the time constant of the decay.

2.1.3 Voltage dynamics

Models of membrane dynamics have been proposed at several levels of biophysical
realism. Conductance-based models provide a biophysical representation of excitable
cells that allow a very detailed description of the cellular mechanisms. Yet the math-
ematical tool on which they rely are fairly advanced and require enormous compu-
tational resources to simulate populations of neurons. More flexible and expressive
approaches such as rate models have been widely used to describe the activity of
neural populations. But, as discussed in the introduction, this class of model misses
the fundamentally discrete nature of synaptic transmission.
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We will therefore focus on an intermediary level, namely current-based models,
and more specifically leaky integrate-and-fire (LIF) neurons. Indeed these incorporate
crucial features of biological neurons, such as operation in continuous time, spike
generation and reset, while also maintaining some degree of analytical tractability.
A neuron’s state is described by its membrane potential, which performs a leaky
integration of its input (both feed-forward and recurrent). As soon as the membrane
potential exceeds its threshold, the neuron emits an action potential and resets its
value. These spikes are discrete events and, contrary to Hodgkin-Huxley neurons
for example, they do not have a characteristic shape. We will have to add vertical
lines on the voltage traces to show the time steps at which spikes are emitted. We
furthermore assume that the resting potential is halfway between the reset potential
and the threshold, and take 0 for simplicity.

Let us start with a simplified case where units are not constrained to be excita-
tory or inhibitory. It is known that biological network have separate populations of
neurons for excitation and inhibition, which is referred to as Dale’s principle. The
separation of excitation and inhibition will be introduced and analysed in section B.
Note that we assume that the number of neurons exceeds the number of dimensions
of the signal, i.e.N � J .

Let us consider a recurrent network of N LIF neurons. The spiking rule can be
written Vn(t) > Tn, where Vn is the time varying membrane potential of neuron n

and Tn its fixed threshold. The dynamics of the membrane potential of neuron n are
given by :

V̇n(t) :=
@Vn

@t

(t) = ��V Vn(t) +
JX

j=1

Fnjcj(t) +
NX

k=1

⌦nkok(t) + �V ⌘n(t), (2.3)

where Fnj is the connection strength from input j to neuron n and ⌦nk the connection
strength from neuron k to neuron n. The time constant of the voltage leak is set by �V .
The reset values are included in the diagonal elements of the recurrent connectivity
matrix. One could think of them as an autapse. After each spike, the voltage is reset
to Vn ! Tn + ⌦nn, where ⌦nn is a negative number. The variance of the synaptic
background noise ⌘n(t) is controlled by �V . From now on we will drop the time
dependencies to simplify notations.

2.1.4 Readout and objective

We will assume that a downstream area reconstructs an estimate of the input signal
from a simple weighted sum of the filtered output spike trains, corresponding to a
synaptic integration. This type of linear readout is a classic method used to analyse
electro-physiology data [15] [16]. By extension this is also how we understand the
readout of an incoming signal by a downstream circuit. This operation can be written
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Figure 2.3: Top panel Signal space : in black, the time evolution of a one dimen-
sional input signal and in green, the ”jumpy” reconstruction achieved by the network.
Bottom panel Voltage dynamics : voltage traces (arbitrary units) of the two identi-
cal LIF neurons that compete to represent the signal. The voltages fluctuate around
resting potential. Neuron integrate their input up to threshold, at which point they
fire an action potential. After spiking, the membrane is decreased to a reset value.
Note also that the respective spike trains of these neurons are irregular.

:

x̂ =
NX

n=1

Dnrn, (2.4)

where Dn is the n-th column of the decoder matrix. This J-dimensional vector
characterises the position of neuron n in the activity space and can be interpreted as
the the feature represented by this neuron. Note that by applying equation 2.1, we
can deduce the dynamics of the estimate signal : @x̂

@t = ��dx̂+Do.
Now recall that the objective of this network is to have x̂ ⇡ x at low metabolic

cost, as shown in the upper panel of 2.3. To quantify how good such a readout
performs, we can simply average a loss function over time. Such a loss function is
typically composed of two terms :

l(x, r) = D(x, x̂) + C(r),
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where the first term is the distance from the real input to its reconstruction, and
the second one is a cost over neural activity. Neural responses can be obtained
by minimizing this loss over the activity, and this is how we will chose the spiking
rule. For mathematical convenience we will use the Euclidean distance and a linear
combination of L2 (quadratic) and L1 (linear) costs terms. The role of these costs
will be discussed in section 2.1.7. The loss function that we use is :

l = kx� x̂k22 + µ krk22 + ⌫ krk1 , (2.5)

where µ and ⌫ control the respective weight of these costs. The performance of
the readout over a period T is given by L = hl(t)it. Provided that T is long enough
all possible inputs are seen and this average over time is equivalent to an average over
the distribution of the input.

2.1.5 Choice of decoders

Having said that the cost function quantifies the quality of the reconstruction, let us
add that it can also be used to determine the best possible decoder. Minimizing the
loss over the decoder is a linear regression problem that can be solved. But in some
situations we might not have such a simple solution. In general, the optimal decoders
(or features) are those minimizing the expected value of the loss. Note that decoders
could also be fitted to neural data (see [12]).

For sake of simplicity, we will start by choosing the decoder matrix such that
neurons pave the signal space. For example in the next figures, decoders will be
evenly distributed on a circle. For signals living in higher dimensions, one can simply
sample points from multi-dimensional Gaussian distributions. Algorithms of linear
complexity such as Poisson Disk sampling allow to randomly sample points in space,
while preserving a certain regularity (i.e.avoiding regions with abnormally high or
low sample density). In any case, recall that D 2 RJ⇥N and that each column Dn

contains the information on the position of neuron n in the J-dimensional signal
space.

2.1.6 Connectivity and thresholds

Having defined an objective function and some decoders, we will now derive the feed-
forward and recurrent connectivity that will optimally fulfil this objective. In doing
so, we take inspiration from the formalism of associative memory models, and more
specifically from the energy functions developed by Hopfield [17] [18]. Indeed, in
this kind of top-down approaches, one first states an energy function from which the
connectivity can then be deduced. Then the network relaxes to states which are local
minima of the energy function (also called objective function, or loss function).

Illustration is provided in figure 2.4 where three important things can be remarked.
First, we can see that after each spike, the membrane voltage of the emitter neuron
and of its neighbours is decreased. After deriving the optimal connectivity, we will
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Figure 2.4: Encoding a 2D oscillator, the example of a circular signal and of 8 neurons
evenly distributed on a circle (without costs nor noise) Top panel : two dimensional
signal space. The trajectory of the input signal during a 100 ms time window is
represented in black. Its corresponding reconstruction is represented in green. The
error (their di↵erence) is represented in red. Colored arrows indicate the position
in space of each neuron’s decoder and colored dots stand for their respective spikes.
Bottom panel : voltage traces of the neurons involved in the coding of this signal
during this 100 ms time window (using the same color code). Neurons have the same
threshold value (dashed black line).

understand that the function of recurrent connection is indeed to spread local infor-
mation to other parts of the network.

Second, we can visualize the spiking rule geometrically. This figure shows that, as
soon as the projection of the reconstruction error exceeds half of a decoder norm, the
corresponding neuron emits a spike. Each spike pushes the error toward the origin
and the estimate away from it - while the membrane leak does the opposite. We
will show in the derivation that voltages are indeed projections of the error onto the
decoders.

Third, note that neurons do not strictly take turn. This can be surprising given
that every region of the circle is best encoded by one unit. Yet, for a signal that
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is larger than the decoders, a combination of decoders can provide a more accurate
estimate that any single unit. Indeed when several neurons are active at almost the
same time, then their instantaneous firing rate are strictly positive. As a result the
readout will combine their respective contribution. This situation does not arise
when signal and decoders have similar norms because in that case neurons are only
active at distant times.

Following the definitions, the e↵ect of neuron n emitting a spike at time t is an
instantaneous increase in the filtered spike train, rn ! rn + 1, and an update of the
signal estimate x̂ ! x̂+Dn, where Dn is the n-th column of the decoder matrix D.
In that case we can rewrite the loss function 2.5 as :

l(t|n spiked) = kx� x̂�Dnk22 + µ kr+ enk22 + ⌫ kr+ enk1 ,

where [en]i = �ni. We want each individual neuron to fire only if that minimizes the
overall value of the loss function. To do so, we apply a greedy minimization principle.
It means that the minimization is done at every time step without consideration for
the future impact of changes induced by a spike. Note that in continuous time, two
neurons will never spike simultaneously. But when simulating the network, we have
to enforce that at most one spike can be emitted per time step (which is chosen
su�ciently small).

This spiking condition can be written l(t|n spiked) < l(t|n did not spike). By
multiplying out and cancelling, it directly follows that:

D>
n (x� x̂)� µrn <

1

2
(kDk22 + µ+ ⌫)

Notice that all terms on the left hand side are time dependant, while all terms
on the right hand side are constant. It is therefore straightforward to interpret the
former ones as a time-varying voltage and the latter ones as a fixed threshold. Such
that :

Vn = D>
n (x� x̂)� µrn (2.6)

Tn =
1

2
(kDk22 + µ+ ⌫). (2.7)

In other words the membrane voltage of neuron n is the projection of the recon-
struction error onto its decoder plus a quadratic cost term, and its threshold is half
the norm of its decoder plus a penalty. Importantly, this means that each neuron
contributes to the global minimisation objective having access to local quantities
only. Rephrasing these equations into a geometrical statement, we have that : a
neuron fires when the reconstruction error aligns with its decoder.

We could work with this voltage equation, but to describe its voltage dynamics,
we have to di↵erentiate it. This operation allows us to comply with the known LIF
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model and to use the related terminology. The temporal derivative of Vn is given by :

V̇n = D>
n ẋ�D>

nDṙ� µṙn

= D>
n (��dx+ c)�D>

nD(��dr+ o)� µ(��drn + on)

= ��dVn +D>
n c� (D>

nD+ µen)o,

where we successively applied equations 2.2, 2.1 and 2.6.

Finally we can conclude on the network connectivity by comparing the previous
equation with 2.3. This yields the following optimal network connectivity (in matrix
notation) :

F = D>

⌦ = �D>D� µI

Note that the threshold equation 2.7 could be rewritten T = 1
2(�diag(⌦) + ⌫)

and that the decay time constant of the membrane and of the filtered spike train are
equal, �V = �d.

Let us now interpret this optimal connectivity. First, let us discuss the optimal
feed-forward weights. As expressed by equation 2.6, a neuron only sees a projection
of the reconstruction error. And according to the architecture shown in figure 2.1, the
error is measured through projection on the feed-forward connectivity F. But, after
spikes are emitted, the reconstruction changes according to the readout connectivity
D. It is therefore natural that optimaly connected networks both measure and
correct the error in the same direction.

Second, let us stress that the optimal recurrent weights have one very important
property. To understand it, we have to observe that recurrent weights are symmetric
and directly related to the decoding weights. Neurons with orthogonal decoders are
not connected to each other, indeed their dot product is null. For example, figure 2.4
shows that the yellow voltage trace is not influenced by spikes from the blue neuron
because these two are orthogonal to each other.

Following on the same geometrical interpretation of the dot product, we see that
oppositely tuned neurons will excite each other via these connections. Conversely,
similarly tuned neurons inhibit each other, which means that a spike from one of
them acts as a reset on the others. Note that the impact of a spike on the other parts
of the network is instantaneous, recurrent connections act without delay. Therefore
these connections can be called fast connections.

Knowing that voltages are projections of the reconstruction error, modifying their
value is influencing the global coding objective. When a neuron inhibits another one,
it notifies him that the error in the direction they both code for has already been
corrected. A neuron that might have participated as well in the reconstruction is
prevented to do so, and only few spikes are emitted. This is how the network satisfies
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the e�ciency objective. Conversely, when a neuron excites an oppositely tuned one,
it notifies him that the error it codes for has increased. This second neuron is then
more likely to spike.

In conclusion, the property of fast recurrent connections is to instantaneously
spread local information to all the members of the network.

Overall, the result is that membrane voltages vary around zero. Therefore, these
fast recurrent connections enforce a balance between the excitatory and inhibitory
currents. To put it shortly, the e�cient coding spiking rule leads to balanced networks.

2.1.7 Costs and regularization

Several combinations of neuronal activity can minimize the distance between the sig-
nal and its reconstruction. In other words the solution space to this task is degenerate.
Let us consider two extreme solutions : the sparse and the dense regime. In the sparse
regime, a small subset of neurons contributes to the task and emit many spikes, which
results in high firing rates. In the dense regime, a large fraction of neurons participate
and each one emits a small number of spike, which results in low firing rates. The
costs, that we introduced in the loss 2.5, allow to regularize the solution and to bring
the network in the desired regime.

Note nevertheless that this degeneracy is a desirable feature of the model. When
many neurons compete to represent a low-dimensional signal (high ratio N/J), one
out of several combination of spike trains will be realized. And when running the
network again, a di↵erent combination of activity will be visited. Therefore, this
inter-trial variability is not noise, it is only a consequence of the degeneracy. The
model suggests that the variability observed in recordings is due to the realisation at
each trial of one out of the many possible responses.

The linear cost controlled by ⌫ only raises the threshold of all the neurons (equa-
tion 2.7). In other words it makes spiking more di�cult, such that responses are
sparser. Note that this cost can also be used to solve the pathological ping-pong
e↵ect. This case occurs when the spike of one neuron brings the error exactly up to
the threshold of an oppositely tuned neuron. At the next time step, this other neuron
immediately replies by another spike. This new will then have the same e↵ect on the
first neurons, and, in the absence of cost, this would go on.

The quadratic cost controlled by µ also increases thresholds, but it has an ad-
ditional negative impact on the recurrent weights. This second component reduces
the amount of information that a spiking neuron spreads to other members of the
network. By doing so, it permits a wider set of the neurons to fire. But a side e↵ect
of this quadratic cost is to downscale the readout. Indeed two requirement have to be
accommodated, namely representing the signal accurately and emitting few spikes.
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The loss function shows the trade-o↵ between these two objectives :

l =
JX

j=1

(xj �Djrj)
2 + µ

NX

n=1

r

2
n + ⌫

NX

n=1

|rn|

where the first objective scales with the dimensionality of the signal and the second
with the number of neurons in the network. Therefore one has to chose the values
controlling this trade-o↵ according to a clear policy. One possible approach is to keep
the reset value constant with respect to network size, indeed biophysical properties
might be unchanged by the number of neurons. Another possible approach is to keep
the trade-o↵ between the two objectives constant for all network sizes. We opt for
this second option, and therefore scale the norm of the decoders by N .

2.2 Derivation of the optimal network : computing

We have seen that the e�cient coding principles results in networks that are tightly
balanced. But this constraint does not allow to carry more general computations. To
build functional network, we will now separate the time scales for encoding and for
computing. More specifically we will introduce a set of connections that operate on
the rates, that is to say on a slower time scale. From now on, when a neuron in the
network fires an action potential, it contributes both fast and slow synaptic currents
to other members of the network. Using the previously described auto-encoder as
building block, let us now derive a network architecture capable of solving dynamics.

2.2.1 Linear dynamical systems

Animal behaviors are usually described by a set of symbolic instruction. But rules and
goals of the task can not be processed as such by the previously described framework.
Yet, one can reformulate them in terms of continuous dynamics, which motivates an
extension of the framework to make it able to track a system of di↵erential equations.
In previous work [13], slow connections were added and applied directly on the con-
volved activity. The specificity of these connection is that their e↵ect lasts several
time steps after a spike. Note that this idea is also present in a di↵erent form in the
Hopfield networks literature [19].

The voltage dynamics of neuron n mow includes a slow component and is given
by :

@Vn

@t

(t) = ��V Vn(t) +
JX

j=1

Fnjcj(t) +
NX

k=1

⌦nkok(t) +
NX

k=1

�nkrk(t) + �V ⌘n(t), (2.8)

where �nk is the weight of the slow connection from neuron n to neuron k, the other
terms are similar to the previous voltage dynamic (equation 2.3).

In analogy with the previous section, we will now derive the optimal value for
these connections. The idea is simply to feed in a dynamical system in place of ẋ.
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Figure 2.5: Perfect integrator network. Top panel Signal space : in black, the time
evolution of a one dimensional input signal and in green, its integration by the net-
work. The readout is close to the perfect integration (target in grey). Bottom panel
Voltage dynamics : in black, voltage traces of the two oppositely tuned neurons. The
neuron on the top codes for negative values, and the one on the bottom for positive
values. In accordance with the geometrical interpretation of the fast recurrent con-
nections, we see that each spike resets the emitter neuron and excites the oppositely
tuned neuron.

Let us consider a linear dynamical system described by :

ẋ(t) = Ax(t) + c(t), (2.9)

where A 2 RJ⇥N is the state transition matrix and c(t) is the control signal. Two
simple cases can already be described. When A = ��I, the system filters the signal
c(t). This first example recovers the auto-encoder network discussed in the previous
section. The second example, shown in figure 2.5, is a one dimensional integrator
where x(t) =

R t

0 c(t
0
)dt

0
. This integration is perfect because there is no leak (i.e.A = 0,

which corresponds to an infinite time constant). Nevertheless, it is relevant to add a
leak to model biological systems.
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Following the same logic as before, let us di↵erentiate the voltage equation 2.6,
we now obtain :

V̇n = D>
n ẋ�D>

n
˙̂x� µṙn

= D>
n (Ax+ c)�D>

n (��dx̂+Do)� µ(��drn + on)

= D>
nAx+D>

n c+ �dD
>
n x̂� (D>Dn + µen)

>o+ µ�drn,

where we used equations 2.9, 2.4 and 2.1 in the second line. We can now recognize
⌦ and use D>

n x̂ = D>
nx� Vn � µrn from the voltage equation 2.6. This yields :

V̇n = D>
nAx+D>

n c+ �d(D
>
nx� Vn � µrn) +⌦no+ µ�drn

= ��dVn +D>
n c+⌦no+D>

n (A+ �dI)x.

But neuron n could not possibly have access to the signal x. Therefore, we need to
continue the derivation and replace this signal by a local quantity (that is a quantity
to which the neuron has access). We saw in the previous section that when fast
connections balance the network, then the encoding objective is fulfilled. Assuming
that this condition is met, we can use x ⇡ x̂ and apply equation 2.4 again. The next
subsection discusses the exact solution. We finally get the following approximate
solution :

V̇n ⇡ ��dVn +D>
n c+⌦no+D>

n (A+ �dI)Dr.

Comparing this approximation with equation 2.8, we can now conclude that the
optimal slow connections take the form (in matrix notation) :

� = D>(A+ �dI)D

This set of slow connection resembles the fast connections, except for the intro-
duction of the state transition matrix and of the leak. The major di↵erence is that
slow connections are applied on rates, so that their e↵ect lasts several time step after
the emission of a spike.

2.2.2 Exact solution

In order to correctly replace x in the voltage dynamics, we have to use the voltage
equation 2.6. We can write (in vector notation) : D>x̂ = D>x � V � µr. The
matrix D> being rectangular, we need to compute its left pseudo inverse L. We have
L = (DD>)�1D, which yields for neuron n :

x = LnVn + x̂+ µLnrn

Using this new equation, we obtain the exact voltage dynamics :

V̇n = D>
nALnVn � µD>

n (A+ �dI)Lnrn +D>
n c+⌦no+�nr,
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where we used the slow connections as derived previously.

Nevertheless, this solution is not biologically plausible because it assumes a leak
term that depends on the voltages of other neurons. This equation is also unusable
when implementing inactivation. Indeed for the same reason, disrupting the voltage of
some neurons will directly disrupt the voltages of other neurons. Overall the voltage
leak should remain a local quantity. We will therefore stick to the approximate
solution. Moreover an asymptotic argument can be made to ensure that this solution
is valid for large networks.

2.3 Implementation of transient inactivations

As described in the introduction, we are mainly interested in the robustness of the
network. Modeling optogenetics inactivation is very straightforward, we force the
membrane potential to remain at resting potential. This manipulation prevents
inactivated neurons to cross threshold.

Figure 2.6: Inactivation Top panel Signal space : in black, the time evolution of a
one dimensional input signal and in green, its reconstruction by the network. The
accuracy of the encoding is not compromised by the inactivation. Bottom panel
Voltage dynamics : in black, voltage traces of the two identical neurons. The shaded
cyan area indicates the time window of inactivation. The remaining neuron compen-
sates for the silence of the inactivated one.

18



Figure 2.6 presents one implementation of inactivation, but it could be simulated
in other ways. For example, rather than clipping the membrane voltage to zero,
one could strongly hyperpolarise it. But, once the inactivation window ends, it then
takes unreasonable time to reach resting potential again. This is the reason why we
favoured the first method. Note that by construction, manipulating the membrane
dynamics or the threshold is equivalent up to a convolution. Note also that the e↵ect
of using a smaller �d compared to figure 2.3 and 2.5 is a longer decay time constant
and less spikes.

Figure 2.7: Tuning curves are a temporary solution to an optimisation problem. Same
set-up and color code as in figure 2.4 : a two-dimensional circular signal encoded by
eight neurons evenly distributed on a circle. Upper panel : tuning curves in the
standard case. Each neuron codes for a signal feature, depending on the direction of
its decoder in the signal space. Lower panel : tuning curves after the inactivation
of one neuron. The yellow neuron has been silenced, therefore its neighbour have to
broaden their tuning and fire more to compensate for its absence.

Figure 2.7 shows that an external perturbation can modify the tuning curves of
the neurons. In general, this framework suggests that tuning curves of biological
neurons are not invariant. Indeed when presenting several di↵erent inputs to the
network, it is necessary to keep learning the optimal decoders in order to reach the
most metabolically e�cient representation (not shown in this document). In this
case, tuning curves are constantly updated.
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Chapter 3

Results

We will now turn to the mouse pre-motor system and present an instantiation of the
recurrent spiking network. Following the three steps we took when introducing the
data in section 1.2, let us discuss the results of our simulations in the same order. We
will first describe theoretical analogues to the task, then to the neural recordings and
eventually to the manipulations. In turn, these results will motivate expansions on
the model, and we will introduce an approach to make its architecture more realistic.

3.1 Set-up

Applying the model requires us to interpret the task in terms of continuous dynamics.
Indeed this is the kind of element that can be processed by the network. Stimulus can
be presented in two di↵erent location, which is easily described as a step function.
We will represent anterior pole location by a positive step, and posterior location by
a negative step. The corresponding contingency is : lick right for anterior stimulation
and lick left for posterior stimulation of the whiskers.

Now, from a network that receives an input step, we want to generate responses
analogue to the recordings. To do so we have to design a dynamical system that
captures most of the trajectory of the neural responses and then let the network solve
these dynamics. It has been observed that the task elicits variable yet characteristic
neural responses. From these we can extract the principal components and assign
each of them to one dimension of the dynamical system.

Three main modes emerge from the analysis of the recordings in ALM. First, there
is a large burst of activity during the sampling epoch. This flow of cortical activity
corresponds to the reception of the sensory information. This mode can therefore
be described by a simple encoding of the stimulus. The second mode is a sustained
activity during the delay period. This activity is crucial to hold the information after
the stimulation stopped and until the response. Integration of the sensory evidence
is a natural way to describe it. The third component of the activity is the steady
increase of all firing rates throughout the task. This ramping mode can be captured
by a squared integration. Indeed, integrating the persistent activity is a way to obtain
an increasing function. The resulting three dimensional dynamical system is depicted
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in the left panel of next figure. In analogy with the experimental work, we will give
names to the three di↵erent periods of the task. The ”sampling epoch” goes from 0
to 250 ms, it corresponds to stimulus encoding. The ”delay epoch”, from 250 to 700
ms, corresponds to the waiting time. And finally the ”response epoch” goes from 700
to 1000 ms.

Figure 3.1: Dynamical system that captures modes of the neuronal activity. Left
panel : simple three dimensional system. The stimulus is represented by the black
step and its encoding by the blue trace. Integration (green) and squared integration
(orange) of this trace correspond respectively to persistent activity and to ramping
activity. Right panel : a five dimensional system. On top of the three modes
previously described, encoding of the go cue (magenta) and noise (grey) correspond
respectively to response burst and to background activity. Note that the input com-
mand is negative, corresponding to a lick left trial.

Let us write down the corresponding linear dynamical system. Following on the
methods (equation 2.9), we simply have to choose the relevant state transition matrix.
This yields :

ẋ =

0

@
�1 0 0
↵ 0 0
0 � 0

1

Ax+

0

@
stimulus

0
0

1

A
,

where ↵ and � are values between 0 and 1. Indeed, the first dimension of the system
encodes the stimulus, the second one integrates the stimulus scaled by a factor ↵ and
the third dimension integrates the second one scaled by a factor �.

It is of course possible to design complex dynamics that would account for more
features of the recordings. For example, there is another burst of activity at the
go cue that continues during the response. This can be described as another step
input and its encoding. Moreover, there is ongoing activity in ALM, that could
be approximated by noise. Indeed this region might be involved in many other
computations. A system incorporating these additional dimensions is depicted in the
right panel of figure 3.1.
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Another project would be to design a network able to compute a binary decision
(corresponding to lick left or right response) from the sensory evidence it received.
This would require non-linear operations that are not supported by the architecture
discussed here. Exploratory analysis of dendritic non-linearities indicate that the
framework could be further expanded to carry such tasks. Note that letting the
persistent activity and ramping activity fade away as soon as the response has been
emitted would bring the model even closer to the experiment. For now, we will present
results obtained from the simple three dimensional dynamical system only.

3.2 Neuronal activity

Having shown that the trajectory of the neural responses can be captured by a set
of dynamics, let us feed them to the network and analyse the resulting activity. To
do so, we simply have to set the connectivity of the network to its optimal value
(as described in the methods). Because the membrane voltage equation contains a
noise term, running the task several times will yield di↵erent output spike trains.
Repeating this operation for each conditions of the task allows to compute statistics
of the population activity. Parameter values and decoders used in the simulations are
available in A.1.

Figure 3.2: Neural activity is variable and the network is balanced. Left panel :
the inter-spike intervals distribution is (almost) close to the exponential distribution,
which is a signature of Poisson-like variability (Fano factor = 0.99). Upper right
panel : input currents to each neuron are tightly balanced. Blue and red traces
correspond respectively to inhibitory and excitatory currents received by the example
neuron. Lower right panel : membrane voltage of two similarly tuned neurons.
The dashed orange line represents the spiking threshold. Even though voltages are
strongly correlated, the spike trains di↵er.
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We observe in figure 3.2 that, alike recordings, modeled neural responses are highly
variable and that the network is tightly balanced. The model provides underlying
mechanisms for these key features. As explained in the first paragraphs of section
2.1.7, variability is not noise. It is only a consequence of the redundancy of the net-
work. At each run, one out of the many possible response patterns is realized. And as
explained in the last paragraphs of 2.1.6, balance is a consequence of the e�cient cod-
ing objective. Fast recurrent connections spread local information across the network.

Let us now investigate individual cells properties. We will consider the raster
plots and peri-stimulus time histogram of four example neurons. Each line of the
raster plot corresponds to the activity of one given cell across several trials. We
present results for forty runs of the network in each of the conditions : left or right
stimulus, and standard or inactivation trial (160 runs in total). We show neurons
that are selective for the lick right trials, but the same goes for left selective neurons.

Figures 3.3 to 3.6: Four example neurons during lick left and lick right trials (respec-
tively coded in red and in blue). Top (resp. bottom) of each figure shows the raster
plot (resp. the PSTH). Dashed lines indicate sample, delay and response epochs.

Figure 3.3: this right selective neuron
shows persistent activity

Figure 3.4: this right selective neuron
shows ramping activity

Figure 3.5: this right selective neuron
shows persistent activity

Figure 3.6: this right selective neuron
shows encoding activity
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To better understand the results shown in figures 3.3 to 3.6, we again have to
refer to the methods. Each modeled neuron codes for a feature of the signal, and we
saw that this selectivity depends on the neuron’s position in the signal space. These
positions are described by the columns of the decoder matrix. We derived from the
e�cient coding objective that a neuron should fire whenever the reconstruction error
is in the direction of its decoder (equation 2.6). In other words, neurons should be
recruited when the signal is in the direction for which they code.

Here we sampled decoders randomly on the surface of the unit sphere (see A.1
for illustration). This means that their decoders have three non-zero components
(except for those falling on the axis planes). Therefore each neuron will fire for
a specific combination of the signal dimensions. In other words, each neuron has
a mixed selectivity, and the observed activity is the solutions to an optimization
problem solved at the population level.

In conclusion, modeled neurons are able to reproduce the recorded patterns of
activity both at the population and at the individual level. And the model suggests
an explanation to this intermingled activity in terms of position of the decoders in
the signal space.

3.3 Compensatory mechanisms

Having shown that the network is able to generate the desired activity, let us now
probe its robustness. In experiments, transient optogenetic inactivation has been
applied during the delay epoch to one of the anterior lateral motor cortex. To mimic
this manipulation, we will clip to zero the membrane voltages the first half of the
neurons during the delay. Let’s assume that neurons 0 to 49 (resp. 50 to 99) stand
for the left hemisphere (resp. right hemisphere).

Note that we do not add any further components to the network. We previously
designed a dynamical system to reproduce recorded activity, and here we simply assess
the robustness of the network as it is.

3.3.1 The network is able to compensate

To evaluate the performance of the network, we have to consider two things : first,
the quality of the readout (distance between the reconstructed and the desired signal)
and second, the e�ciency of the code (number of spikes emitted). We want to see
if the encoding, the persistent and the ramping activity modes are preserved. The
standard and the perturbed network should have equivalent behaviors, except for the
time window of inactivation in which some cells are silent and others compensate.

The mechanism for the compensation shown in figure 3.7 relies on the redundancy
of the network. Indeed, when several neurons code for the same feature, removing
one of them induces the remaining neurons to compensate, so that the readout is
overall una↵ected. This was shown in figure 2.6 for the one-dimensional case with
two neurons, and the same applies here. Here, redundancy is naturally built in the
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Figure 3.7: The network performs the task in spite of perturbation.
Top panel : ”jumpy” output signal. In blue the encoding of the step input, and
in yellow its integration and squared integration. The thin lines of the same color
are the target signal. Due to the leak, the reconstruction progressively deviates
from the target. The accuracy of the readout is not a↵ected by the perturbation.
Middle panel : raster plot. The shaded cyan area represents the inactivation.
This manipulation has no other e↵ect on activity than silencing half of the neurons.
Bottom panel : voltage trace of the neuron which emitted most spikes (highlighted
in the raster plot). We recognise a LIF neuron, fluctuating around resting potential
and emitting spikes when hitting threshold (dashed orange line).

network. Given that one hundred neurons span a three dimensional signal space, each
dimension of the signal can still be accounted for when some neurons are silenced
(see A.1 for illustration). By following the prescribed spiking rule, remaining neurons
naturally and optimally adapt their activity.

But there is a limit to the compensation ability of the network. Following on the
same interpretation of the model, as soon as the signal enters a region of the space
that is not covered by any neuron, the network will fail. Indeed, neurons only see
projections of the error onto their decoders. If no decoder points in the direction of
the error, then this error is not seen and can therefore not be corrected. For example
in figure 2.5, there are two oppositely tuned neurons integrating a one dimensional
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input. If one of them was silenced, then the other one would not be able to replace it
and the task would not be realized. In general, the symptom of this situation is the
imbalance of the input received by the neurons. Here, as expected, when all neurons
are silenced, the network is unable to restore information and it fails.

3.3.2 Neurons return to their initial trajectories

The critical part of the experimental results is that after inactivation of one hemi-
sphere, the activity of neurons returns to its initial trajectory. This is true for both
hemispheres, that is to say for both the compensating and the perturbed neurons.
As discussed in [6], state of the art models failed to reproduce this e↵ect. Let us look
at the results of our model.

Figures 3.8 to 3.11: Same four right-selective example neurons during lick right trials.
Comparison of the trials without inactivation (coded in black) to the trials with
inactivation (coded in cyan). During inactivation trials, the first half of the network
is silenced between 400 and 600 ms, and the second half compensates for this loss.

Figure 3.8: this silenced neuron re-
turns to its persistent activity

Figure 3.9: this silenced neuron re-
turns to its ramping activity

Figure 3.10: this neuron is enhanced
during the perturbation and then re-
turns to its trajectory

Figure 3.11: this neuron is depressed
during the perturbation and then re-
turns to its trajectory
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Figures 3.8 to 3.11 show that, in accordance with data, the activity of the modeled
neurons returns to its initial trajectory. But here, activity catches up very rapidly
after inactivation, while it takes tens of milliseconds in the data presented in [6].
It should be possible to chose the parameters of the simulation to reproduce this
compensation time constant. Yet, we preferred to avoid any parameter tuning and
chose to present the network as it is.

Following on the discussion of the variability of the network, the presence of costs
were critical to obtain this result. Indeed, costs regularize the optimisation problems
by decreasing the space of solution. In other words, they control the number of
possible redundant network solutions. Without costs, the network would always visit
new combinations of activities to solve the task. This is due to the high neuron over
dimension ratio of our case (N/J = 100/3, see A.1 for illustration).

3.3.3 Compensation is heterogeneous

Interestingly, recordings revealed that the compensating activity of the remaining
neurons is very heterogeneous. When inactivation is applied, some cells fire more
compared to baseline, but others fire less. This might be counter intuitive given
that more spikes are often associated with more information. Let us see whether
compensating cells from our network are able to reproduce the zoo of activity
described by experimentalists.

Figure 3.12 shows that compensatory activity is also heterogeneous in the network.
To characterise this activity, we once again have to understand that it depends on the
relative position of the decoders (see A.1 for illustration). In the baseline case, each
region of space is covered by many neurons. But after inactivation, this can change,
and some regions might be less well covered. Let us consider two cases.

In the first case, after inactivation, a region of the signal space is covered by a
few remaining neurons only. Then, when the reconstruction error enters this part
of the space, these few neurons have to fire more than in baseline. In baseline, the
responsibility of correcting the error was shared among more neurons, and each one
was recruited less often.

In the second case, the opposite is true. Imagine that after inactivation, one
direction of the signal space is poorly covered. Then, neurons pointing in the opposite
direction should fire less. Indeed these neurons are less likely to cross threshold be-
cause the neurons that should send them excitation are silent (recall that oppositely
tuned neurons excite each other through fast connections, lasts paragraphs of section
2.1.6).

In conclusion, remaining neurons that are similarly tuned to the silenced ones fire
more than in baseline, and conversely for oppositely tuned neurons. The network was
able to reproduce the diversity of compensatory mechanisms observed in the data and
suggests that it is due to the relations between signal features.
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Figure 3.12: PSTH of all the neurons during the 200 ms time window of inactivation.
Comparison of the case without inactivation (left panel) to the case with inactivation
(middle panel). Neurons corresponding to the left hemisphere (0 to 49) have been
silenced. The di↵erence between the two conditions (right panel) shows that com-
pensation is heterogeneous. Indeed some of the remaining neurons fire more (positive
values in red) and some other fire less (negative values in blue).

3.4 Anatomical constraints on the model

Results presented so far were obtained with a network of neurons that send both ex-
citatory and inhibitory projections. But this is not biologically plausible. Not only it
does not comply with Dale’s principle, is also assumes unrealistically fast communica-
tion through the corpus callusum of both excitatory and inhibitory projections. The
first problem can be solved using the approach outlined in B. For the second one, we
could develop an architecture where each hemisphere has its private inhibitory pool
of neuron that does not communicate with the other side.

Such an architecture is shown in 3.13 and could be simulated as well. It would also
open the door for more advanced applications, such as replicating the lateralized bias
in licking induced by the unilateral perturbation. To do so, we would simply have
to inject some asymmetry in the network by di↵erently biasing the pool of sampled
decoders for each of the two hemisphere. Such an approach seems to have support in
experimental data which show that the two hemispheres do not compute exactly the
same thing.
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L.E. R.E.

L.I. R.I.

Figure 3.13: Private inhibition. In red excitatory projections, in blue inhibitory
projections (both fast and slow). Unilateral inactivation can be implemented by
depolarizing one pool of inhibitory neurons. L. R. I. and E. describes the neuronal
populations and respectively stand for Left, Right, Inhibitory, Excitatory.
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Chapter 4

Conclusion

4.1 Discussion

We have shown that recurrent spiking networks can be derived from an e�cient coding
objective and that they are able to perform interesting tasks such as solving linear
dynamics. These networks are also able to reproduce two features that are ubiquitous
in cortex : the response variability and the tight excitation - inhibition balance. The
first is a consequence of degeneracy and does not equate with noise, while the second
is a signature of e�cient coding. Overall, properties of single neurons are temporary
network solutions to an optimization problem solved at the population level

Moreover, we established that these networks are robust to perturbations, pro-
vided that neurons are redundant. This allowed to reproduce specific features of the
data, namely that after perturbation, neurons return to their initial trajectories and
that the compensation activity of the remaining neuron is heterogeneous.

Compared to other approaches to the same kind of problems, this model has the
advantage of reproducing statistics of neural activity and of being able to compute
at the same time, while being understandable in simple geometrical terms.

More importantly, this model did not need any additional component to account
for the robustness of neural activity. In this respect it has an advantage over the
alternative option presented in [6], where robustness was obtained only after adding
a redundant modules. Plus our model also shows intra-hemispheric robustness.

Nevertheless, the assumption giving rise to these results are not exactly in line
with the modeled system. The network is highly recurrent and employs fast con-
nection. This is a fair approach to describing local microcircuits, but accounting for
long range communication between cortical areas requires substantial adaptation of
their architecture. We outlined a network architecture that could incorporate some
important anatomical constraints.

More generally, the theoretical framework used here has its own limitations. Be-
cause it relies on fully connected networks, it lacks the sparsity of connections observed
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in cortex. Given that the network is built on the basis of these many symmetrical
connections, there is no easy fix to this problem. Nonetheless it does not discredit
the ideas developed, and in high dimensional spaces this problem disappears (indeed,
in that case the dot product of two random vectors will be often be null).

One real limitation to this approach is that it provides no information at all on
how representation are constructed. By focusing on the decoding of the information,
we neglected the question of encoding. However, predicting neural activity from the
state of the animal and of its environment is a very important challenge.

4.2 Perspectives

On top of the network architecture modifications suggested in the text, it would
be interesting to expand this work in several directions. Here is a list of intriguing
possibilities.

(1) Letting the network learn its connectivity using synaptic plasticity rules instead
of ascribing the optimal connectivity from start. Ongoing work [14] shows
that neurons in the learning network simply act to balance their input, which
spares the disputable assumption of predictive neurons that spike only when
the predicted impact of a spike is to minimize the global objective function.

(2) Expanding the functional repertoire of the network computational abilities by
exploring the role of dentrites in parallel computing to solve non-linear di↵eren-
tial equations. Ongoing work suggests that sigmoidal dendritic non-linearities
as described in the Poirazi model [20] would be useful.

(3) Introducing synaptic delays and asymmetries in connectivity in order to relax
the assumption of instantaneous communications [21]. It would allow to explore
the role of di↵erent time constants for the inhibitory neurons, and more generally
to design several cell subtypes (not just two).

(4) Deriving the connectivity from a di↵erent cost function, changing the type dis-
tance and of costs and analyse the properties of the resulting network. Also
one could reinterpret the loss in a probabilistic framework, where the distance
would be derived from the likelihood of the stimulus, and the costs from the
prior distribution over features.

(5) Analysing the experimental data that have been discussed (available data online
on CRCNS). Applying a demixed principal component analysis [22] would help
to understand the activity modes, and to expand the dynamical system. This
would also help to shed light on the referential restoration of certain components
of the activity that has been documented in [6].

Finally, this model makes a critical prediction that could be empirically tested to
decide of its value. Neurons tuned to the same feature, that is to say neurons that
receive correlated inputs, should inhibit each other - while oppositely tuned neurons
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should excite each other. This preferential connectivity should be observable in the
emerging connectivity data that uses on genetic barcoding technologies.
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Appendix A

Simulation parameters

Table A.1: List of paramters used for the simulations of the figures throughout the
third chapter (results)

Parameters Values

Time step dt 10�4
s

Number of neurons N 100
L2 cost µ 10�5

L1 cost ⌫ 10�5

Standard deviation of membrane
noise �V

10�5

Membrane leak �V 2
Decoder leak �d 2

Dimension of input J 3
Scaling factor ↵ 0.4
Scaling factor � 0.2

33



Figure A.1: Overcomplete set of decoders. One hundred neurons span a three di-
mensional signal space. Each decoder is a vector that goes from the origin to the
point drawn on the figure. Red crosses show neurons that are silenced during the
inactivation. Orange dots show the remaining neurons that will have to compensate
for this loss. We can see that the remaining neurons still cover the full space. Given
that this set of remaining neurons is still overcomplete, the network could face even
more drastic perturbation (four neurons minimum). But this would come at the cost
of unrealistic firing rates.
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Appendix B

Separation of Excitatory and
Inhibitory units

In this chapter, we will shortly outline how networks with separate pools of neurons
for excitation and for inhibition can be built. This section is not required to under-
stand the first part of the results, it can therefore be skipped in a first reading.

Although the cells that naturally follow from the e�cient coding objective are
mixed, it is possible to separate these two components by adding some constraints
and some new units. Simply forcing the recurrent connections to be strictly excitatory
does not solve the question. Indeed, in that case, neurons with similar tuning would
not be able to balance each other.

Therefore, on top of restraining the existing network to be excitatory, we have to
introduce an additional population of M inhibitory neurons that will have to fill the
remaining role, namely to balance the excitatory population. To do so, inhibitory
neurons will have to encode the activity of the excitatory population. This new
population will reset similarly tuned excitatory neurons each time an excitatory spike
is emitted. By adding this extra population, we do not change the core architecture
of the network, input is projected only on the excitatory neurons and output is also
readout from them only.

The new architecture is represented in figure B.1 and can be expressed in a new
set of separated voltage dynamics :

@V

E
n

@t

= ��V V
E
n (t)+FE

n c(t)+⌦EE
n oE(t)+⌦EI

n oI(t)+�EE
n rE(t)+�EI

n rI(t)+�V ⌘(t),

@V

I
m

@t

= ��V V
I
m(t) +⌦II

moI(t) +⌦IE
m oE(t) + �V ⌘(t),

where the elements of ⌦
EI

and ⌦
II

are assumed to be negative and the elements
of ⌦

IE

and ⌦
EE

are assumed to be positive up to one exception : the self-connection
weight of excitatory neurons is assumed to remain negative. Indeed this connection is
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Figure B.1: EI network. Excitatory projections are shown in red with diamonds
synapses, and inhibitory projections are shown in blue with open circles synapses.
Fast recurrent connections are represented by continuous lines and slow connections
are represented by dashed lines.

not an autapse, but the value of the neurons reset potential. For sake of simplicity, we
will assume that the time constants are homogeneous between the two populations.

Notice that the feed-forward and decoding weights are not constraint to be posi-
tive. But this should not be a concern as it can be solved by working in the positive
quadrant of the signal space only.

B.1 Derivation of the optimal connectivity

Given that the recurrent weights are directly related to the decoding weights, we
can simply separate these decoders into a strictly positive and a strictly negative
component. This gives : D = D+�D�. Further separating the recurrent connectivity,
we get:

⌦r = �(D+ �D�)
>(D+ �D�)r

= (D�
>D+ +D+

>D�)r� (D+
>D+ +D�

>D�)r

where the first member has strictly positive weights and the second one strictly
negative weights. Therefore this second member can not be accounted for by excita-
tory neurons, this is where the new pool of inhibitory neurons comes into play. As
described previously, we want these inhibitory neurons to track the activity of the

36



excitatory neurons. This mew readout objective be written :

r̂E = eDrI , (B.1)

where rE and rI are the firing rate respectively of the excitatory neurons and of the
inhibitory neurons, and eD 2 RN⇥M are the decoding weights of the inhibitor neurons.

Then the link to the mixed network is given by :

⌦r = ⌦EErE �⌦EI
eDrI ,

And we now have an additional objective, which is simply a new version of the
loss function discussed in the first section of this chapter. Which is:

lI =
���rE � eDrI

���
2

2
+C(r

I

).

There is a strict hierarchy between the two objective functions, indeed the decod-
ing from the excitatory population will be correct only if the inhibitory population
satisfied its objective function in the first place.

From there it is then straightforward to add the slow connectivity. Following the
same logic as before, we simply split� into a positive and a negative part, respectively
�+ and ��, such that the new slow connectivity is :

�r = �EErE ��EIrI , (B.2)

where the first member is implemented by the excitatory neurons and the second part
by the inhibitory neurons.

B.2 Replication of the mixed network

To run this new network, we now need to decide on the decoders for the new popu-
lation. As discussed previously, in general : eD = argmine

D

hlIi.
Let us start with the simplest case, each excitatory neuron has its corresponding

inhibitor that is exactly tuned to track it. That is to say eD = I.
Figure B.2 shows it is possible to separate a mixed network into and EI network

and yet obtain an equivalent behavior. Nevertheless to obtain this match it has been
necessary to double the number time step for the inhibitory population. Indeed, all
excitatory neurons need to receive the information about the error that has been
corrected exactly when a spike is emitted. This temporary solution needs to be
complemented by a more systematic investigation of the role of delays in the network.

Note also that it is possible to change the proportion of the inhibitory neurons by
changing their decoders. Nevertheless this requires a clever choice of decoders because
the task is to span a N dimensional space with only M neurons. It is possible to fulfil
this objective when the rate of the excitatory population only explore a subspace of
the activity space RN .
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Figure B.2: Replication of the previous results in a network of excitatory and in-
hibitory neurons. On top of each panel, the input signal in black and its reconstruc-
tion in green. Bottom of each panel, raster plot. Left panel Mixed network Right
panel EI network, in red excitatory units, and in blue inhibitory units.S
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Appendix C

Pre-registration document

Predictive coding and robustness of representation

in recurrent spiking networks

March 15th 2016

Sketch of my research project CogMaster M2, defence in English in June

Supervisors : Sophie Denve (ENS, LNC, Group for Neural Theory, Paris)
Christian Machens (Champalimaud Center for the Unknown, Lisbon)

Reviewers suggestions : JP. Nadal, V. Hackim, R. Brette, S. Ostojic, M. Chalk

C.1 Background and rationale

The variability and heterogeneity of cortical activity is both puzzling and fascinating.
Indeed it makes the question of how the brain implements cognitive functions even
harder. The nervous system has to combine high accuracy of information represen-
tation, high computational complexity of processing, robustness to perturbation and
constrained metabolic cost. In order to better understand these properties one can
study the neural code and search for the underlying principles that give rise to the
brain as we know it.

The theoretical framework developed by Sophie Denve, Christian Machens and
colleagues suggests a recurrent network model of integrate-and-fire neurons that ex-
hibits such qualities. This work relies on two main assumptions. The first one is that
information encoded by the sensory system of interest can be decoded linearly. This
means that after complex processing within one layer, a simple synaptic integration
of the output spike trains is transmitted to the next processing stages. In this respect
the properties of single neurons are temporary network solutions to an optimization
problem. The second main assumption is that each action potential provides new
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information, which implies that spiking dynamics are crucial. Given that neural re-
sponses are shaped by metabolic constraints, there are good reasons to think neurons
tend to reduce information redundancy. Here the e�ciency is achieved through pre-
dictive spiking neurons whose membrae potential track the di↵erence between the
input signal and its representation. This mechanism is implemented by fast and slow
lateral connections and allows to track dynamical variables spike per spike.

Building upon the theory of both e�cient coding and balanced networks, this
approach accounts for the robustness and flexibility of the code. It also suggests
that neurons collaborate to represent information and compute in highly recurrent
networks. By doing so it provides arguments for sparse coding and it indicates that
high variability of neural responses does not result from noise but from the degener-
acy of the representation, as several patterns can code for the same variable. This
framework gives importance to the precise spike timing and most importantly, it pro-
vides a functional explanation for the tight balance between excitatory and inhibitory
potentials received by each neuron.

C.2 My project

The brain has an impressive ability to withstand neural damage. In order to bet-
ter understand this ability I probe the predictions of the aforementioned theoretical
framework on real data, the variable I am interested in is the robustness of the neu-
ral representation to external perturbation. In doing so I am trying to provide an
analytical explanation for a bewildering experimental finding.

The data was collected in Karel Svoboda lab (Janelia farm) and consists of mice
Anterior Lateral Motor (ALM) cortex recordings, a region that is known to play a role
in sensory guided movements. The study asks how neurons within ALM drive move-
ments, that is to say how preparatory activity translates in actual motor commands.
Data was acquired during a whisker-based object location discrimination task that is
composed first of sampling period, then of a delay period that ends with an auditory
go cue, and finally of a response period. Depending on the location of the pole they
are presented with, animals are expected to lick right or left and do so correctively
on about 80% of the trials. Recordings in this region show that neurons have diverse
selectivity, some respond in advance of movements to the contralateral side and others
respond in advance of movements to the ipsilateral side. Unilateral photostimulation
of channelrhodopsin-2 in GABAergic interneurons in ALM during the delay period
induces an ipsilateral bias in response. That is to say, disruption of ALM on one side
particularly a↵ects contralateral movements, while neurons selective for each side are
present in about equal proportions in both hemispheres.

To tackle that disconnect I write Python simulations of the recordings previously
described and investigate the e↵ects of in silico equivalents for optogenetic inactiva-
tion. This allows me to study the evolution of the cellular dynamics and to describe
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the performance changes of the agent as a function of the inactivation. The aim is to
characterize the compensatory activity of the intact part of the network : remaining
neurons change their firing patterns in various ways to compensate, some firing more
and others less depending on their selectivity. I can then compare the read-out of this
activity to the behavior of the animal. I try to reproduce the Tuning Curves of the
recorded neurons, and more importantly, after silencing units, I try to reproduce the
changes in the tuning curves of the leftover kernels. These simulations should repro-
duce the mixed selectivity and heterogeneous activity described in vivo. By simulating
a network with two sub-populations corresponding to each hemisphere, we hope to
reproduce the ipsilateral bias in response induced by a unilateral perturbation.

This work can be expanded in various directions, a first one would be to study
the learning mechanisms that regulate the aforementioned tight balance, a second
one would be to investigate the sparsity of the connectivity structure of the network.
Through this project we hope to better understand sensory decision making and
persistent activity mechanism of working memory.
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