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Environment Physiology Perception

N N

 How do populations of neurons extract/represent visual information?

* In what ways 1s this matched to, or optimized for, our visual environment?
 How do these representations enable/limit perception?

* What new principles may be gleaned from these representations, and
applied to engineered 1maging or vision systems?
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[figure: Hubel ‘95]
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[Hegde & van Essen, 2000
Ito & Komatsu, 2004
Anzai et.al., 2007

etc]
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Canonical functional models for sensory neurons
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Temporally adaptive
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Local spatial
gain control
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V1: Surround suppression
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V1: Cross-orientation suppression
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V1 Normalization Model

The linear model of simple cells

Firing
@ > / rate

Retinal image

The normalization model of simple cells

g S >@ ‘ / Firing
rate

petinal image ittt

Other cortical cells

[Carandini, Heeger, and Movshon, 1996;
Carandini & Heeger, 2012]
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Example: Area MT
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Sparse marginal statistics

— Response histogram
— — Gaussian density

Probability

Filter Response

[ Burt& Adelson 82; Field 87; Mallat 89; etc]
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Independent Components Analysis (ICA)

rotate stretch rotate

For linearly-transtormed-factorial sources:
guaranteed i1ndependence

(with some minor caveats)

[Cardoso 89; Jutten & Herault 91; Comon 94; Bell & Sejnowski 96; etc]
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ICA on image blocks

I 5 I 2 I
LIS 1R I % I =1
% I I S P S
S I I I
-
g
I I = O S N Y
R O = I S I
= I = I S e
il
S = = 5 S S =

[Bell/Sejnowski *97; see also Olshausen/Field *96]
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Linearly-transformed tactorial model

Coefficient
density: Basis set: Image:

1[0
1] =1= 1,
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Marginal Gaussianization

[Chen & Gopinath 01]
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Indications that the model 1s weak...

Sample from model Image, ICA-transformed
and marginally Gaussianized
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Subbands are heteroskedastic
(they have variable variance):

We can model this behavior using a

Gaussian scale mixture (GSM):
[ Wainwright & Simoncelli 2000]
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GSM

Model generalized coetficient neighborhood as a
Gaussian scale mixture (GSM) [Andrews&Mallows “74]:

T = /22U =
7% 7
45 r?

e 74 1s Gaussian, z > 0

%

e z and u are independent ==
7

ﬂ,
74

e x is elliptically symmetric, with

covariance zC),
* marginals of x are leptokurtotic

[ Wainwright&Simoncelli, ‘99]
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Joint statistics

joint histogram of natural image
band-pass filter responses
with separation of 2 samples
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Joint statistics - sound

N

|

joint histogram of natural audio signal
gammatone filter responses with
separation of 0.1 msec
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non-Gaussian elliptical models
of natural images:

- Simoncelli, 1997;

- Zetzsche & Krieger, 1999;

- Huang & Mumford, 1999;

- Wainwright & Simoncelli, 2000;
- Hyvdrinen and Hoyer, 2000;

\\\ - Parra et al., 2001;
/\;ﬁ - Srivastava et al., 2002;
>4 - Sendur & Selesnick, 2002;
O N - Teh et al., 2003;
" - Gehler and Welling, 2006

A - Lyu & Simoncelli, 2008

- etc.
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* Whitening makes spherical, but not independent!
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radial Gaussianization (RG)
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Gaussianize the radial component of the density

Approximate version: estimate local L2 norm,

and divide (1.e., local gain control)

[Lyu & Simoncelli, 2008]
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... all paths lead to a spherical/factorial Gaussian

[Lyu & Simoncelli, 2008]
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Densities and their factorizations

ICA PCA RG

Linearly
transformed

factorial
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[Lyu & Simoncelli, 2008]




RG vs. ICA on coetficient pairs
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RG eliminates most dependency for nearby coetts
ICA offers minimal advantage over PCA
Similar behaviors for coefficient blocks

[Lyu & Simoncelli, 2008]
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Joint densities
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® Nearby: densities are approximately circular/elliptical

® Distant: densities are approximately factorial

[Simoncelli, ‘97; Wainwright&Simoncelli, ‘99]
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How do we build a global model that
captures the full range of observed
statistical behaviors?

1) Random Field of Gaussian Scale Mixtures
[Lyu & Simoncelli, 2008]

2) Build an implicit model, using local gain
control. I’ll show three recent examples...
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Example 1: Density estimation

[Ball¢, Laparra, Stmoncelli, ICLR-16]




Density estimation (parametric density)

[Balle, Laparra, Stmoncelli, ICLR-16]
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Density estimation (parametric transformation)

Gaussianization y
i 2
s > g(x; 0) >
. ¥ B
w, L’
X ~ Dy ‘. .-

~
~ "
~ -
~ -
ol R

"Iinferred” density:

x; 0
Px(x) = aggx )N(g(x; 0))

Friedman, 1984

Chen & Gopinath, 2001
Lyu & Simoncelli, 2009
Laparra et al., 2010
Dinh et al., 2015

[Balle, Laparra, Stmoncelli, ICLR-16]
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Parameter estimation

X — g(x; 0) — Y

~togpte) = | L bl ooy

minimize wrt. 0 using stochastic gradient descent

[Balle, Laparra, Stmoncelli, ICLR-16]
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Marginal distribution of linear filter responses

» X >j > Y

Burt & Adelson, 1981
Field, 1987
Mallat, 1989

[Balle, Laparra, Stmoncelli, ICLR-16]
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[Balle, Laparra, Stmoncelli, ICLR-16]
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[Balle, Laparra, Stmoncelli, ICLR-16]
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Contour lines, linear filter responses

model
histogram estimate

[Balle, Laparra, Stmoncelli, ICLR-16]
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[Balle, Laparra, Stmoncelli, ICLR-16]
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Generalized divisive normalization (GDN)

--------------------------------------------------------------------------

Zj

in(

\ & : >
Bi‘l‘Zj Yij|Zj|a”) : y

--------------------------------------------------------------------------

Special cases/related models:

e Independent Component Analysis, Cardoso, 2003

e Independent Subspace Analysis, Hyvarinen & Hoyer, 2000

e Weighted normalization model, Schwartz & Simoncelli, 2001

e Topographic ICA, Hyvarinen et al., 2001

e Radial Gaussianization, Lyu & Simoncelli, 2009

o [,-nested symmetric distributions, Sinz & Bethge, 2010

e “Two-layer model’, Koster & Hyvarinen,

2010

[Balle, Laparra, Stmoncelli, ICLR-16]
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Parameter estimation (multiple layers)

X ——  go(xo; 0) M) g1(x1; 0) > Y
dg(x; 0)| 1 )
—log px(x) = —log | == Sllglx 0, + €
] xo; O A dgq(xq; 6 )
tog| 20eb0i0) | _ gq|201X20))

minimize wrt. 8 using stochastic gradient descent

[Balle, Laparra, Stmoncelli, ICLR-16]
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One layer of joint GDN > many layers of marginal GDN
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[Balle, Laparra, Stmoncelli, ICLR-16]
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Example 2: Perceptually-optimized rendering

[Laparra, Ball¢, Berardino & Simoncelli, 1n preparation]

Wednesday, October 19, 16



Perceptual error 1s not consistent with
Mean Squared Error

Equal MSE:
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Why does MSE fail?

Human visual system constructs a nonlinear visual
representation, and 1s sensitive to distortions in
this space
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Simple retinal
gain-control
model:

I

O

>

V

other neurons

Multiscale version: Normalized Laplacian Pyramid (NLP)
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[Laparra, et. al. 2016]
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NLP Distortion metric
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— NLP
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[Laparra, et. al. 2016]




TID2008 database

[Ponomarenko et al., 2009]

MSE 1n retinal model
response space explains
perceptual data

[Laparra et al, 2016]
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The 1image rendering problem
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Automatic high dynamic range image rendering

original Paris et. al., 2015 Laparra et. al. (in preparation)
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Perceptually-
optimized
image rendering

Lmax = 1073
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Dithering (binary rendering)
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Example 3: Compression

|Ball¢, Laparra & Simoncelli, PCS-16+]




End-to-end rate-distortion optimization
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3-stage GDN cascade
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[Balle et al., in preparation]
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original (cropped) jpeg: 9094 bytes, RMSE: 12.032
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[Balle et al., in prepation
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original (cropped) jpeg: 9851 bytes, RMSE: 18.84

3-stage GDN: 8115 bytes, RMSE: 15.95

\

[Balle et al., in preparation]
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[Balle et al., in preparation]
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Local gain control...

e 1s found throughout biological sensory systems

e can be implemented as an invertible nonlinear
transform

e can Gaussianize natural signals, eliminating
dependencies

e can mimic human perception of visual
distortions

e can be used, cascaded, for image compression

e but we need a more complete characterization/
design toolbox!
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