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Environment Physiology Perception

• How do populations of neurons extract/represent visual information?

• In what ways is this matched to, or optimized for, our visual environment?

• How do these representations enable/limit perception?

• What new principles may be gleaned from these representations, and 
applied to engineered imaging or vision systems?
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impact on the responses of the early visual system (Fig. 3). We recorded
the responses of neurons in the lateral geniculate nucleus (LGN), which
receives the output of the retina and provides input to the visual cortex.
The recordings were performed extracellularly in anesthetized, paral-
yzed cats. LGN responses were barely affected by sudden steps in
luminance (Fig. 3a) and were weakly affected by changes in contrast
(Fig. 3c). The measured responses were much smaller and occured
faster than the high-luminance responses predicted by low-luminance
measurements of the receptive field (Fig. 3b) or the high-contrast
responses predicted by low-contrast measurements of the receptive
field (Fig. 3d). These reductions in gain and the changes in dynamics
occured well within a cycle of the drifting grating (80 ms in Fig. 3a,
128 ms in Fig. 3c), confirming that the gain control mechanisms
operate very quickly, in less than 100 ms1,5,6,22–26.

Do the mechanisms of gain control for luminance and contrast
reflect the independence of luminance and contrast seen in natural
images? To react appropriately to the changes in luminance and
contrast, the corresponding gain control mechanisms should be
functionally independent. In other words, within the range of lumi-
nances encountered during natural viewing, luminance gain control
should have the same effects at all contrasts, and contrast gain control
should have the same effects at all mean luminances. Instead, if the gain
control mechanisms were appropriate for statistics other than those in
the natural environment—for example, for those of 1/f noise—one
would expect that contrast gain control would be biased by local
luminance or that luminance gain control would be biased by local

contrast. In other words, one would expect the visual system to exploit
the redundancy implicit in any lack of independence.

Independence of gain control mechanisms
To test for independence, we characterized the effects of luminance and
contrast gain control in the LGN. We recorded responses to drifting
gratings (Fig. 4) with mean luminance (6–56 cd m–2) and contrast
(10–100% Michelson contrast; 0.07–0.7 r.m.s. contrast) covering a
range extending over a factor of 10, similar to the excursion seen in
patches of natural images (Fig. 2b). To fully quantify the effects of gain
control on both the amplitude and the dynamics of the responses1, we
measured responses to a range of frequencies by increasing the drift rate
exponentially with time from 0.5 Hz to 40 Hz in 5 s and back to 0 in the
subsequent 5 s (Fig. 4a–c, and Supplementary Fig. 1 online).
The responses to these stimuli can be read as tuning functions for
stimulus temporal frequency. As expected1, the preferred temporal
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Figure 3 Effect and time course of gain control mechanisms in LGN.
(a) Response of an LGN neuron to a drifting grating of constant contrast
(14%), whose luminance steps from 32 cd m–2 to 56 cd m–2 (left) and back
to 32 cd m–2 (right). Spatial frequency and temporal frequency (12.5 Hz) are
optimal for this neuron. The temporal profile of the stimulus is shown below
the responses. Histograms (gray) were obtained by convolving the spike trains
with a Gaussian window (s ¼ 5 ms), and averaging over three stimulus
presentations. From the histograms, we computed the average response to a
cycle of the stimulus before (dashed) and after (black) the step in luminance.
The linear prediction (green) was obtained by scaling the response before the
step (dashed) by the ratio of the two luminances. (b) Comparison of average
responses to low luminance (dashed) and high luminance (black), and of the
response expected in the absence of gain control (green). (c) Response of an
LGN neuron to a drifting grating of constant luminance (32 cd m–2) whose
contrast steps from 31% to 100% (left) and back to 31% (right). Spatial
frequency and temporal frequency (7.8 Hz) are optimal for this neuron.
Histograms (gray) are the average over five stimulus presentations. The linear
prediction (green) was obtained by scaling the response before the step
(dashed) by the ratio of the two contrasts. (d) Comparison of average
responses to low contrast (dashed) and high contrast (black), and of the
response expected in the absence of gain control (green).
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Figure 4 Characterizing LGN responses at various luminances and contrasts.
(a–c) Responses of an LGN neuron (X-type, on-center) to temporal frequency
sweeps at (a) low luminance and low contrast (L ¼ 6 cd m–2, C ¼ 10%,
Michelson contrast), (b) low luminance and high contrast (L ¼ 6 cd m–2,
C ¼ 100%) and (c) high luminance and high contrast (L ¼ 54 cd m–2,
C ¼ 10%). Histograms (gray) were obtained by averaging over ten stimulus
presentations. Red curves are descriptions of the responses by the descriptive
model (Fig. 5a). Stimuli were sinusoidal gratings at optimal spatial frequency
(icons). The temporal profile of the stimuli is shown under the responses;
drift rate increased exponentially with time, from 0.5 Hz to 40 Hz in 5 s, and
back (not shown). (d–f) Impulse responses used for the predictions in a–c.
The impulse response is smaller and faster at the higher contrast (e) or
luminance (f) than at low luminance and contrast (d, and dotted curves).
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Temporally adaptive 
gain control
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cal contrast decreases the responsiveness (gain) of retinal
ganglion cells (Shapley and Victor, 1978, 1981; Victor, 1987; Bac-
cus and Meister, 2002). This effect is thought to be enhanced in
LGN (Kaplan et al., 1987; Sclar, 1987; Cheng et al., 1995). It could
potentially explain the suppressive phenomena.

Materials and Methods
We characterized the responses of 34 well isolated neurons recorded in
LGN of eight anesthetized, paralyzed cats. These neurons were held long
enough (!2 h, commonly 4 h) to perform a series of more than six
experiments, which involved !180 stimuli.

Recording. Adult cats were anesthetized with ketamine (20 mg/kg)
mixed with acepromazine (0.1 mg/kg) or xylazine (1 mg/kg). Anesthesia
was maintained with a continuous intravenous infusion of penthotal
(0.5– 4 mg ! kg "1 ! h "1). Animals were paralyzed with pancuronium
bromide (0.15 mg ! kg "1 ! h "1) and artificially respired with a mixture
of O2 and N2O (typically 1:2). EEG, electrocardiogram, and end-tidal
CO2 were continuously monitored. Extracellular signals were recorded
with quartz-coated platinum/tungsten microelectrodes (Thomas Re-
cording, Giessen, Germany), sampled at 12 kHz, and stored for spike
discrimination. A craniotomy was performed to access the right LGN (at
approximately Horsley-Clarke A6L9), whose location was determined
from the sequence of ocular preference changes along the penetration.
Cells had receptive fields with eccentricities ranging from 2° to 45°, with
an average value of 13.4 # 8.9° (SD; n $ 34). All procedures were ap-
proved by the Veterinary Office of Canton Zurich and by the Animal
Care and Use Committee of the Smith-Kettlewell Eye Research Institute.

Visual stimuli were displayed using the Psychophysics Toolbox (Brai-
nard, 1997; Pelli, 1997) and presented monocularly on a calibrated mon-
itor with mean luminance of 32 cd/m 2 and refresh rate of 124 Hz. Stimuli
lasted 1– 4 s and were repeated three to six times (blocks). Stimulus order
within blocks was randomized. Each block included one or more blank
stimuli.

We classified cells into X and Y types from responses to counterphase-
modulated sinusoidal gratings of different spatial frequencies (Enroth-
Cugell and Robson, 1966; Hochstein and Shapley, 1976). Grating phase
was chosen to elicit the smallest first harmonic response. Cells are classi-
fied as Y type if the amplitude of the second harmonic reliably exceeded
that of the first harmonic. Most units (28 of 34) were of the X type.

Stimuli were centered on the receptive field based on responses to
drifting gratings enclosed in small circular apertures displayed at differ-
ent spatial locations. Control measurements were repeated regularly to
ensure correct stimulus centering in the face of the drifts in eye position
that can occur even during paralysis. When such drifts occurred, we
added a new parameter to the model: stimulus offset from the center. We
obtained its value by fitting responses to stimuli of different diameters.
We then held this value fixed across experiments starting with the exper-
iment in which the shift occurred.

Model. As illustrated in Figure 1, the model contains two pathways,
one linear and one nonlinear.

The linear pathway involves a classical center (ctr) – surround (srd)
receptive field, a difference-of-Gaussians, RF $ Gctr " ksrdGsrd, where
Gctr and Gsrd are two-dimensional Gaussian densities of width !ctr and
!srd, and ksrd is the relative weight of the surround. The receptive field is
convolved with the stimulus S(x,y,t) to produce a linear response:

L%t& " 'S * RF(%0, 0, t&. (1)

For our stimuli, which consist of the sum of a “test” and a “mask” drifting
gratings, L(t) is the sum of the responses to the individual gratings:

L%t& " Ltest%t& # $maskLmask%t&, (2)

where $mask denotes the relative effectiveness of the temporal frequency
of the mask in driving the receptive field.

The nonlinear pathway involves a suppressive field that computes the
SD of local luminance clocal. Assuming that the stimulus S(x,y,t) has a
mean of zero, local contrast follows

c local " !"""S)%x, y, t&2GSF%x, y&dx dy dt, (3)

where GSF denotes the suppressive field, a Gaussian of width !SF, and
S)(x,y,t) denotes the stimulus processed through a bank of filters, [S *
H](x,y,t). We model each of these filters as a difference-of-Gaussians:
H $ Gu " kdGd.

The suppressive field controls neural gain by dividing the output of the
receptive field. The result is

V%t& " Vmax

L%t&

c50 # clocal
, (4)

where c50 determines the strength of the suppressive field, and Vmax

captures the overall responsiveness of the neuron.
Firing rate is a rectified version of V, with threshold V0:

R%t& " 'V%t& % V0(* . (5)

Model characterization. We fitted the model onto the harmonic compo-
nents of the spike trains at the temporal frequencies of the stimuli. Let {ti}
denote the spike times of a response to a stimulus of temporal frequency
f; the harmonic component follows r $ 1/N#¥j exp["2&iftj]#,
where #x# denotes the modulus of the complex number x, and N is the
number of spikes.

Fits minimize the square error between responses of neuron and
model $ij%rij % mj&2, where rij denotes the response of a neuron to trial i
of stimulus j, and mi is the response predicted by the model.

To estimate model parameters, we fitted Equations 1–5 to a sequence
of four experiments, each constraining one or more parameters. The first
experiment constrained the parameters of the receptive field (!ctr, !srd,
and ksrd) and involved drifting gratings varying in spatial frequency.
Gratings had 50% contrast, optimal temporal frequency, !20° in diam-
eter, and one of !14 logarithmically spaced spatial frequencies. The
subsequent three experiments constrained the parameters of the sup-
pressive field (c50, !SF, !u, !d, kd, and $mask) and involved sums of a test
grating and a mask grating, in which we varied mask contrast (see Fig.
3 A, D), mask diameter (see Fig. 3 B, E), and mask spatial frequency (see
Fig. 3C,F ). Test diameter, spatial frequency and temporal frequency were
optimized cell by cell to elicit maximal response. Unless varied, the at-
tributes of the mask were also optimal for the cell. Each experiment
included test gratings presented alone at more than six contrasts and
sums of a 50% contrast test and a mask of variable attributes. Parameter
estimates obtained when fitting one experiment were held fixed in fits to
subsequent experiments. We repeated this sequence of fits until param-
eters changed by +1% since the previous sequence iteration. The result
was a single set of parameters used to predict responses to all
experiments.

Parameters Vmax and V0 were allowed to vary across experiments to
account for slow changes in neural responsiveness and spontaneous ac-

Figure 1. Model of LGN responses. The model includes a receptive field and a suppressive
field. The receptive field has the classical center–surround organization (difference-of-
Gaussians). The suppressive field computes the SD of the outputs of a Gaussian-weighted bank
of filters (FB) and sums the result to a constant, c50. The signals from receptive field and sup-
pressive field meet at a divisive stage. The output of the division is then rectified to yield positive
firing rates.

Bonin et al. • The Suppressive Field of LGN Neurons J. Neurosci., November 23, 2005 • 25(47):10844 –10856 • 10845

[Bonin, et al 2005]
darker symbols) (Solomon et al., 2002; Ozeki et al., 2004). The
model captures these effects (Fig. 5A, curves). It exhibits size
tuning because extending the stimulus beyond the confine of the
receptive field center increases the output of the suppressive field,
clocal, but not the output of the receptive field. At low contrasts,
instead, clocal is much smaller than the constant c50; the output of
the suppressive field is ineffectual, and size tuning is not
observed.

The dependence of size tuning on stimulus contrast is marked
in our sample (Fig. 6A). In most cells, size tuning is strongest at
high contrasts (Fig. 6A, open symbols) and weakest at low con-
trasts (Fig. 6A, filled symbols). To quantify the degree of size
tuning, we estimate the amplitude of plateau responses, the re-
sponses to the largest stimulus tested, as a fraction of the peak
responses. At 10% contrast, plateau responses are 27 ! 20%
smaller than the peak responses (mean ! SD; n " 34). The degree
of size tuning increases with contrast and peaks at 100% contrast,
at which plateau responses are 39 ! 18% below peak responses.
The model predicts a similar trend, with values of 11 ! 9% at
10% contrast and 37 ! 15% at 100% contrast.

A consequence of these effects is that preferred stimulus size
decreases with contrast (Kremers et al., 2001; Solomon et al.,
2002; Nolt et al., 2004). To quantify this effect, we estimate the
diameter of the stimulus eliciting maximal response. This pre-
ferred stimulus diameter decreases as contrast is increased, rang-
ing from 3.8 ! 2.0° at 10% contrast to 2.4 ! 1.7° at 100% con-
trast. The model captures this effect with predicted preferred
diameters of 4.1 ! 3.0° at 10% contrast and of 2.5 ! 1.6° at 100%
contrast.

The model also predicts how responses saturate with increas-
ing contrast (Fig. 5B). Responses to large stimuli show strong
saturation (Fig. 5B, lighter symbols). For these stimuli, the out-
puts of both receptive field and suppressive field are simply pro-
portional to grating contrast c, so the model predicts that firing
rate obeys R # c/(c50 $ c). This expression is known to capture
the contrast responses of LGN neurons (usually contrast is ele-
vated to a power of n, with n close to 1) (Derrington and Lennie,
1984; Sclar et al., 1990; Felisberti and Derrington, 1999; Kremers
et al., 2001).

The model predicts a novel phenomenon: that contrast satu-

ration is pronounced only for large stimuli
(Fig. 5B). Responses to small stimuli grow
nearly linearly with contrast (Fig. 5B,
darker symbols), whereas responses to
large stimuli show clear saturation (Fig.
5B, lighter symbols). The model predicts
linearity because small stimuli induce in
the suppressive field a response that is neg-
ligible compared with the constant c50.
These data suggest that there is nothing
intrinsically nonlinear about LGN re-
sponses: were it not for the suppressive
field, responses would grow linearly with
contrast.

This pronounced dependence of satu-
ration on stimulus size is seen throughout
our sample (Fig. 6B). In most cells, satura-
tion is strongest for large stimuli (Fig. 6B,
white symbols), weaker for optimal stim-
uli (Fig. 6B, gray symbols), and nearly ab-
sent for the smallest stimuli (Fig. 6B, black
symbols). To summarize the degree of sat-
uration across cells, we fit a power law to

the contrast–response curve at each stimulus diameter. Power-
law exponents close to 0 indicate strong saturation; exponents
close to 1 indicate linear growth. With an average exponent of
0.78 ! 0.41, saturation is weakest at the smallest stimulus diam-
eter eliciting a reliable response. Saturation monotonically in-
creases with stimulus diameter, with an average exponent of
0.46 ! 0.18 at the largest diameters tested. The model predicts the
trend yielding exponents of 0.61 ! 0.11 for small diameters and
0.40 ! 0.16 for large diameters.

As expected from previous results (Shapley and Victor, 1978;
Sclar, 1987), the effects of gain control appear stronger in Y cells
than in X cells. The strength of the suppressive field c50 averages
0.21 ! 0.06 in X cells (n " 28, bootstrap estimates) and 0.14 !
0.06 in Y cells (n " 6). The power-law fits of the contrast–re-
sponse curve (at the largest stimulus tested) yielded exponents of
0.46 ! 0.03 in X cells and 0.40 ! 0.10 in Y cells. These differences,
however, did not reach statistical significance (ANOVA, p % 0.1).

There are also indications that gain control is more pro-
nounced in ON-center cells than in OFF-center cells, as has been
demonstrated in retina (Chander and Chichilnisky, 2001;
Zaghloul et al., 2003). The constant c50 averages 0.15 ! 0.03 (n "
19) in ON cells and 0.27 ! 0.08 in OFF cells (n " 15). The
exponents average 0.39 ! 0.05 in ON cells and 0.50 ! 0.05 in OFF
cells. These differences are consistent with previous results but
are not statistically significant ( p % 0.1).

Model performance
The model performs well in a vast majority of neurons, explain-
ing overall 91.1% of the variance in the contrast-diameter exper-
iments (median, n " 34). This performance is remarkable, given
that model parameters were estimated from a distinct data set
(Fig. 3). To assess model performance in individual stimulus con-
ditions, we computed z-scores of the deviations between mea-
sured and predicted responses. The amplitude of deviations is
mostly below 1 (|z| " 0.65, median; n " 34) indicating that, for
most stimuli, model predictions approach the level of accuracy
set by the trial-to-trial variability of responses.

The model predictions, however, showed small but significant
biases. We estimated accuracy from the unsigned z-scores, con-
ditioned on stimulus contrast or diameter. Predictions are most

Figure 5. Size tuning and contrast saturation. Stimuli are gratings varying in diameter and contrast. Curves are predictions of
model with parameters held fixed from previous measurements (Fig. 3; Vmax " 128; V0 " &2). A, Responses as a function of
diameter, for selected contrasts. B, Same data, plotted as a function of contrast, for selected diameters. Stimuli had optimal
attributes: 0.24 cycles/deg and 7.8 Hz. Cell 33.1.3 (93.9% explained variance).

Bonin et al. • The Suppressive Field of LGN Neurons J. Neurosci., November 23, 2005 • 25(47):10844 –10856 • 10849
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V1: Surround suppression
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V1: Cross-orientation suppression
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RC circuit implementation

The linear model of simple cells

The normalization model of simple cells

[Carandini, Heeger, and Movshon, 1996;
 Carandini & Heeger, 2012]

V1 Normalization Model

Wednesday, October 19, 16



Example: Area MT

[Simoncelli & Heeger, 1998]
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Sparse marginal statistics

[Burt&Adelson 82; Field 87; Mallat 89; etc]
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Independent Components Analysis (ICA)
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For linearly-transformed-factorial sources: 
guaranteed  independence
(with some minor caveats)

[Cardoso 89; Jutten & Herault 91; Comon 94; Bell & Sejnowski 96; etc]

rotate rotatestretch
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ICA on image blocks

[Bell/Sejnowski ’97; see also Olshausen/Field ’96]
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Linearly-transformed factorial model

Basis set: Image:
Coefficient

density:

!
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!
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Marginal Gaussianization
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[Chen & Gopinath 01]
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Indications that the model is weak...

Sample Gaussianized

Sample from model Image, ICA-transformed
and marginally Gaussianized
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We  can model this behavior using a 
Gaussian scale mixture (GSM):
[Wainwright & Simoncelli 2000]

p(
x)

x

p(
x)

x

=

Subbands are heteroskedastic 
(they have variable variance):

Wednesday, October 19, 16



GSM model

Model generalized neighborhood of coefficients as a Gaus-
sian Scale Mixture (GSM) [Andrews & Mallows ’74]:

x⃗ =
√

z u⃗, where

- z and u⃗ are independent

- x⃗|z is Gaussian, with covariance
zCu

- marginals are always leptokur-
totic

[Wainwright & Simoncelli, ’99]

IPAM, 9/04 16

GSM 

Model generalized coefficient neighborhood as a 

Gaussian scale mixture (GSM)  [Andrews&Mallows ‘74]:

x⃗ =
√

zu⃗, where

u⃗ Cu

x⃗|z zCu

is Gaussian with covariance 

z and u⃗ are independent

marginals are always leptokurtic

is Gaussian with covariance 

tends to a Gaussian with covariance Cu

Notable properties:

[Wainwright&Simoncelli, ‘99]

x⃗/
√

z

•     is Gaussian,           
•    and     are independent
•     is elliptically symmetric, with 
covariance 
• marginals of      are leptokurtotic

⇥u

⌅x =
�

z⌅u

z

⇥x

⇥u z > 0

⇥x

zCu
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joint histogram of natural image  
band-pass filter responses 

with separation of 2 samples

Joint statistics
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joint histogram of natural audio signal 
gammatone filter responses with 

separation of 0.1 msec

Joint statistics - sound
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- Simoncelli, 1997;
- Zetzsche & Krieger, 1999;
- Huang & Mumford, 1999; 
- Wainwright & Simoncelli, 2000; 
- Hyvärinen and Hoyer, 2000; 
- Parra et al., 2001; 
- Srivastava et al., 2002; 
- Sendur & Selesnick, 2002; 
- Teh et al., 2003; 
- Gehler and Welling, 2006
- Lyu & Simoncelli, 2008
- etc.

non-Gaussian elliptical models 
of natural images:
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• Density is elliptical, but not Gaussian

• Whitening makes spherical, but not independent!

whitening
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radial Gaussianization (RG)

Gaussianize the radial component of the density

[Lyu & Simoncelli, 2008]

Approximate version: estimate local L2 norm, 
and divide (i.e., local gain control)
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PCA

[Lyu & Simoncelli, 2008]

RG

rotation axis scaling radial 
gaussianization

ICA

rotation axis scaling rotation marginal
gaussianization

rotation axis scaling

... all paths lead to a spherical/factorial Gaussian
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Elliptical
Linearly  

transformed  
factorial 

Factorial Gaussian Spherical 

PCAICA RG

[Lyu & Simoncelli, 2008]

Densities and their factorizations
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RG vs. ICA on coefficient pairs
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Joint densities
adjacent near far other scale other ori
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Fig. 8. Empirical joint distributions of wavelet coefficients associated with different pairs of basis functions, for a single
image of a New York City street scene (see Fig. 1 for image description). The top row shows joint distributions as contour
plots, with lines drawn at equal intervals of log probability. The three leftmost examples correspond to pairs of basis func-
tions at the same scale and orientation, but separated by different spatial offsets. The next corresponds to a pair at adjacent
scales (but the same orientation, and nearly the same position), and the rightmost corresponds to a pair at orthogonal orien-
tations (but the same scale and nearly the same position). The bottom row shows corresponding conditional distributions:
brightness corresponds to frequency of occurance, except that each column has been independently rescaled to fill the full
range of intensities.

remain. First, although the normalized coefficients are
certainly closer to a homogeneous field, the signs of the
coefficients still exhibit important structure. Second, the
variance field itself is far from homogeneous, with most
of the significant values concentrated on one-dimensional
contours.

4 Discussion

After nearly 50 years of Fourier/Gaussian modeling, the
late 1980s and 1990s saw sudden and remarkable shift in
viewpoint, arising from the confluence of (a) multi-scale
image decompositions, (b) non-Gaussian statistical obser-
vations and descriptions, and (c) variance-adaptive sta-
tistical models based on hidden variables. The improve-
ments in image processing applications arising from these
ideas have been steady and substantial. But the complete
synthesis of these ideas, and development of further re-
finements are still underway.

Variants of the GSM model described in the previous sec-
tion seem to represent the current state-of-the-art, both in
terms of characterizing the density of coefficients, and in
terms of the quality of results in image processing appli-

cations. There are several issues that seem to be of pri-
mary importance in trying to extend such models. First,
a number of authors have examined different methods of
describing regularities in the local variance field. These
include spatial random fields [23, 26, 24], and multiscale
tree-structured models [40, 55]. Much of the structure in
the variance field may be attributed to discontinuous fea-
tures such as edges, lines, or corners. There is a substan-
tial literature in computer vision describing such struc-
tures [e.g., 57, 32, 17, 27, 56], but it has proven difficult
to establish models that are both explicit and flexible. Fi-
nally, there have been several recent studies investigat-
ing geometric regularities that arise from the continuity
of contours and boundaries [45, 16, 19, 21, 60]. These and
other image structures will undoubtedly be incorporated
into future statistical models, leading to further improve-
ments in image processing applications.
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[Simoncelli, ‘97;  Wainwright&Simoncelli, ‘99]

• Nearby: densities are approximately circular/elliptical

• Distant: densities are approximately factorial
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How do we build a global model that 
captures the full range of observed 
statistical behaviors?

1) Random Field of Gaussian Scale Mixtures
     [Lyu & Simoncelli, 2008]

2) Build an implicit model, using local gain
    control.    I’ll show three recent examples...
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Example 1: Density estimation
[Ballé, Laparra, Simoncelli, ICLR-16]
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Density estimation (parametric density)

tractable?

[Balle, Laparra, Simoncelli, ICLR-16]
Wednesday, October 19, 16



Density estimation (parametric transformation)

Friedman, 1984
Chen & Gopinath, 2001
Lyu & Simoncelli, 2009

Laparra et al., 2010
Dinh et al., 2015

“inferred” density:

Gaussianization

[Balle, Laparra, Simoncelli, ICLR-16]
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Parameter estimation

[Balle, Laparra, Simoncelli, ICLR-16]
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Marginal distribution of linear filter responses
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[Balle, Laparra, Simoncelli, ICLR-16]
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[Balle, Laparra, Simoncelli, ICLR-16]
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Contour lines, linear filter responses

model
histogram estimate

[Balle, Laparra, Simoncelli, ICLR-16]
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Published as a conference paper at ICLR 2016

Figure 1: Mutual information in pairs of wavelet coefficients after various transformations, plotted
as a function of the spatial separation between the coefficients.

ICA-MG

RG

GDN

Figure 2: Contour plots of pairwise wavelet coefficient densities. Each row corresponds to a model
arising from a different transformation (ICA-MG, RG, GDN). Each column corresponds to a pair
of coefficients spatially separated by distance d (pixels). Gray: contour lines of histogram density
estimate. Black: contour lines of densities induced by best-fitting transformations. As distance
increases, the empirical density between the coefficients transitions from elliptical but correlated to
separable. The RG density captures the former, and the ICA density captures the latter. Only the
GDN density has sufficient flexibility to capture the full range of behaviors.

6

spatial separation (samples)

[Balle, Laparra, Simoncelli, ICLR-16]
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Generalized divisive normalization (GDN)
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[Balle, Laparra, Simoncelli, ICLR-16]
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Parameter estimation (multiple layers)

x yx y

[Balle, Laparra, Simoncelli, ICLR-16]
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One layer of joint GDN > many layers of marginal GDN
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[Balle, Laparra, Simoncelli, ICLR-16]
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Example 2: Perceptually-optimized rendering
[Laparra, Ballé, Berardino & Simoncelli,  in preparation]
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Equal MSE:

Perceptual error is not consistent with
Mean Squared Error
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Why does MSE fail?

Human visual system constructs a nonlinear visual 
representation, and is sensitive to distortions in 
this space
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[Laparra, et. al. 2016]

Simple retinal 
gain-control
model:

other neurons

Multiscale version: Normalized Laplacian Pyramid (NLP)

Wednesday, October 19, 16



NLP

NLP

NLP Distortion metric

[Laparra, et. al. 2016]
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[Laparra et al, 2016]
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Figure 4. Comparison of quality metrics to human perceptual data. Each plot shows the inverse of the mean opinion score of human observers (DMOS) as

a function of prediction of a quality metric, for 1700 images corrupted by different types and magnitudes of distortion (see key, top left). Performance of each

metric is summarized with three numbers (provided above each plot): the Pearson correlation before fitting a logistic function (r1), and the Pearson correlation

(r2) and the prediction error (RMSE) after fitting a logistic function (black line). First row right: root mean square error (RMSE) in the image domain. Second row

left: MSE in a normalized oriented V1 model [10]. Second row right: multi-scale structural similarity index (MS-SSIM) [21]. Third row left: RMSE in the Laplacian

pyramid domain. Third row right: RMSE in the normalized Laplacian domain (eq. 7).

5

MSE in retinal model 
response space explains 
perceptual data

TID2008 database
[Ponomarenko et al., 2009]
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Figure 1: Perceptual rendering. When we take a picture of a scene in the real world (I) we have a perception of
this scene in our mind (f(I)). If the screen was able to reproduce the real scene exactly (i.e. Ir = I) our perception
would be the same (i.e. f(I) = f(Ir)). However due to different restrictions actual screens are far from being able
to reproduce real world scene, then when we render this picture in a screen (Ir) the perception that we get is different
from what we saw in the original scene (i.e. f(I) 6= f(Ir)). For instance while the range of luminances in the real
world could go from almost 0 cd/m

2 (dark room) to around 109 cd/m

2 (sun light at noon), a regular display can
represent only from 1 to 200 cd/m

2. We are aiming to find an image (that can be reproduced in the display) that
produces a perception as similar as possible to the original scene, i.e we want to minimize the distance between f(I)
and f(Ir) with the restriction that Ir has to be rendered in a screen.

where I is a source image, Ir is the image that will be rendered, D(·, ·) is a metric for measuring perceptual distance,
and R is the set of images that can be rendered. Note that this formulation is general for any rendering problem
where the only thing to be changed is the set of possible images to be rendered, and this set is restricted by the display
restrictions. The perceptual distance metric we use in the experiments is presented in the next section. This metric
distance is differentiable in closed form with respect to the image to be rendered Ir, and it allows us to reframe the
problem stated above as an optimization problem. It is important to stress that we do not need an extra function to
convert I to Ir. This is the main characteristic of our proposal.

In order to minimize the functional we perform an alternating projection procedure where we alternate a gradient
descent step to minimize the perceptual distance and a projection on the constraints. During gradient descent, we
employ the ADAM Regularization method [11]. The derivative of the perceptual distance with respect to the image to
be rendered Ir is described in the appendix B.

2.1 Perceptual distance
To quantify perceptual distance, we transform images into a perceptual space using a crude model for the early visual
system (retina and lateral geniculate nucleus) and then compute the distance between the transformed images. In other
words we define a transformation f such that f(I) and f(Ir) are representations of the human visual system (HVS)
perception of images I and Ir respectively. We then compute the distance between f(I) and f(Ir). If we were able
to recreate the original scene exactly, our perceptual representation would be the same f(I) = f(Ir). However due to
display constraints, it is usually not possible to recreate the original image exactly, i.e. I 6= Ir.

We have previously proposed a function, which we call the Normalized Laplacian Pyramid (NLP), that mimics the
functions and nonlinearities of the early Human Visual System (Retina and LGN). We showed that distances measured
between two images in this domain correlate very highly with human opinions [12]. Here we extend the model to deal
directly with luminances (cd/m2). This allows us to work with the same units when setting constraints on acquisition
and display. All parameters of this model were optimized to best explain human perceptual ratings of distorted images
in a public database [13], and are fixed for all results presented. Figure 2 summarizes the steps performed in the
transformation.

3

The image rendering problem
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Automatic high dynamic range image rendering

original Paris et. al., 2015 Laparra et. al. (in preparation)
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original Paris et. al., 2015

Lmax = 10^3 Lmax = 10^4 Lmax = 10^5

Perceptually-
optimized
image rendering
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Dithering (binary rendering)

standard
(Floyd-Steinberg 1976)

original
(grayscale)

Laparra et. al. 
(in preparation)
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Example 3: Compression
[Ballé, Laparra & Simoncelli,  PCS-16+]
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code!
domain

perceptual!
domain

signal!
domain

ratedistortion

[Balle et al., PCS-16]

End-to-end rate-distortion optimization

Under review as a conference paper at ICLR 2017

Figure 3: Relationship between densities of y
i

(element of latent representation), ŷ
i

(quantized ele-
ment), and ỹ

i

(element disturbed by uniform noise). p
ỹi is a continuous relaxation of the probability

masses in each of the quantization bins (indicated by shading).

tionally used (Wintz, 1972; Netravali and Limb, 1980). Figure 2 illustrates the concept. The data
vector x is transformed to a code space using the analysis transform y = g

a

(x;✓), parameterized
by a vector ✓. The latent vector y is subjected to scalar quantization, yielding the vector of integer
quantization indices q and a reconstructed vector ŷ. The latter is then transformed back to the data
space to obtain the reconstruction x̂ = g

s

(ŷ;�), where the synthesis transform g
s

is parameterized
by vector �.

The classical trade-off in lossy data compression is the one between the average bit rate and the dis-
tortion introduced by quantization. The former is given by the entropy H of the discrete probability
distribution P

q

of the quantization indices. The latter is simply the expected distortion of the recon-
struction vs. the original data, and is typically assessed directly with the squared Euclidean norm of
the difference between x and x̂. In the case of images, it is well known that this distortion metric
does not model human perception well (Girod, 1993). To alleviate this problem, we allow an addi-
tional “perceptual” transform of both vectors z = h(x) and ẑ = h(x̂), on which we then compute
distortion using a norm. With an appropriate transform h, this can provide a better approximation
of subjective visual distortion (Laparra et al., 2016). These ingredients make up the rate–distortion
functional, which we seek to minimize over the analysis and synthesis transforms g

a

and g
s

:
L[g

a

, g
s

] = H[P
q

] + �E kz � ẑk. (1)
Here, � is the parameter that governs the trade-off between low bitrate and low distortion. Note that
both terms, the entropy and the expected distortion, are expectations taken over the data (i.e., an
ensemble of images).

Standard optimization methods (e.g., gradient descent) require differentiable functions. Unfortu-
nately, both terms in the functional depend on the quantized values in q, and the derivative of a
quantizer only takes zero or infinite values, rendering gradient-based optimization techniques in-
effective. Here, we propose to substitute quantization with independent additive uniform noise, in
order to obtain a proxy loss function that is differentiable.

A uniform scalar quantizer is a piecewise constant function operating on each of the elements of y:
ŷ
i

= round(y
i

). Without loss of generality, we assume that the quantization bin size is 1, since
we can always modify the transforms to include a rescaling. The marginal density of the quantized
values is then given by:

p
ŷi(t) =

1X

n=�1
P
qi(n) �(t� n), (2)

where
P
qi(n) =

�
p
yi ⇤ U(0, 1)

�
(n), for all n 2 Z, (3)

is the probability mass function of q
i

. Here, ‘⇤’ represents (continuous) convolution, and U(0, 1)
is the density of a uniform distribution on (� 1

2 ,
1
2 ). In other words, p

ŷi is related to p
yi by a con-

volution with a “boxcar” filter kernel followed by sampling. Clearly, the latter is what makes p
ŷ

non-differentiable. Here, we propose to ignore the sampling and use p
ỹi = p

yi ⇤ U(0, 1) instead. It
is identical to P

qi at all integers and provides a continuous relaxation in-between (fig. 3). The corre-
sponding random variable ỹ

i

can be generated simply by adding uniform noise to y
i

(called �y
i

in

3

objective:

Under review as a conference paper at ICLR 2017
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(quantized ele-
ment), and ỹ
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(element disturbed by uniform noise). p
ỹi is a continuous relaxation of the probability

masses in each of the quantization bins (indicated by shading).

tionally used (Wintz, 1972; Netravali and Limb, 1980). Figure 2 illustrates the concept. The data
vector x is transformed to a code space using the analysis transform y = g

a

(x;✓), parameterized
by a vector ✓. The latent vector y is subjected to scalar quantization, yielding the vector of integer
quantization indices q and a reconstructed vector ŷ. The latter is then transformed back to the data
space to obtain the reconstruction x̂ = g

s

(ŷ;�), where the synthesis transform g
s

is parameterized
by vector �.

The classical trade-off in lossy data compression is the one between the average bit rate and the dis-
tortion introduced by quantization. The former is given by the entropy H of the discrete probability
distribution P

q

of the quantization indices. The latter is simply the expected distortion of the recon-
struction vs. the original data, and is typically assessed directly with the squared Euclidean norm of
the difference between x and x̂. In the case of images, it is well known that this distortion metric
does not model human perception well (Girod, 1993). To alleviate this problem, we allow an addi-
tional “perceptual” transform of both vectors z = h(x) and ẑ = h(x̂), on which we then compute
distortion using a norm. With an appropriate transform h, this can provide a better approximation
of subjective visual distortion (Laparra et al., 2016). These ingredients make up the rate–distortion
functional, which we seek to minimize over the analysis and synthesis transforms g

a

and g
s

:
L[g

a

, g
s

] = H[P
q

] + �E kz � ẑk. (1)
Here, � is the parameter that governs the trade-off between low bitrate and low distortion. Note that
both terms, the entropy and the expected distortion, are expectations taken over the data (i.e., an
ensemble of images).

Standard optimization methods (e.g., gradient descent) require differentiable functions. Unfortu-
nately, both terms in the functional depend on the quantized values in q, and the derivative of a
quantizer only takes zero or infinite values, rendering gradient-based optimization techniques in-
effective. Here, we propose to substitute quantization with independent additive uniform noise, in
order to obtain a proxy loss function that is differentiable.

A uniform scalar quantizer is a piecewise constant function operating on each of the elements of y:
ŷ
i

= round(y
i

). Without loss of generality, we assume that the quantization bin size is 1, since
we can always modify the transforms to include a rescaling. The marginal density of the quantized
values is then given by:

p
ŷi(t) =

1X

n=�1
P
qi(n) �(t� n), (2)

where
P
qi(n) =
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p
yi ⇤ U(0, 1)
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(n), for all n 2 Z, (3)

is the probability mass function of q
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. Here, ‘⇤’ represents (continuous) convolution, and U(0, 1)
is the density of a uniform distribution on (� 1
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1
2 ). In other words, p

ŷi is related to p
yi by a con-

volution with a “boxcar” filter kernel followed by sampling. Clearly, the latter is what makes p
ŷ

non-differentiable. Here, we propose to ignore the sampling and use p
ỹi = p

yi ⇤ U(0, 1) instead. It
is identical to P

qi at all integers and provides a continuous relaxation in-between (fig. 3). The corre-
sponding random variable ỹ
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(called �y
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3

relaxation to differential entropy:
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[Balle et al., in preparation]

3-stage GDN cascade
Under review as a conference paper at ICLR 2017
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Figure 5: Architecture of synthesis (g
s

) and analysis (g
a

) transforms for grayscale images. conv:
convolutional layer, with given filter support and number of output/input feature maps. down-
/upsample: regular down-/upsampling (implemented jointly with the adjacent convolution). add:
elementwise addition of a bias parameter per feature map. GDN/IGDN: generalized divisive nor-
malization across feature maps (but not across space), and its approximate inverse; see text. Number
of parameters for each layer given on the bottom.

where U(ỹ
i

; y
i

, 1) is the uniform density on the unit interval centered on y
i

. With this, the first term
in the K–L divergence is constant; the second term corresponds to the distortion, and the third term
corresponds to the rate (all up to additive constants).

Note that if a perceptual transform h is used, or the norm is not Euclidean, p
x|ỹ is no longer Gaus-

sian, but corresponds to an unnamed density which has the distortion metric as its energy function:

p
x|ỹ(x|ỹ;�,�) =

1

Z(�,�)
exp

⇣
��

��h
�
g
s

(ỹ;�)

�
� h(x)

��
⌘
, (6)

where Z(�,�) normalizes the density (but needs not be known to fit the model).

3 NETWORK ARCHITECTURE AND TRAINING REGIME

We have noted previously in the context of Gaussianization that joint normalization is more effi-
cient than simple nonlinearities in modeling image densities (Ballé, Laparra, and Simoncelli, 2015).
Even though the objective here is a different one, it is intuitively similar to Gaussianization in that
a form of independence between the latent variables is sought. Our experiments therefore focused
on using generalized divisive normalization (GDN) in the analysis transform. Based on the no-
tion that the synthesis transform would need to “undo” the transformation (although it need not be
an exact inverse), we applied the principle known from the LISTA algorithm (Gregor and LeCun,
2010) to the fixed point iteration given for GDN inversion by Ballé, Laparra, and Simoncelli (2015).
Namely, we used one iteration of the fixed point iteration, and untied the parameters to enable a
better approximate inverse on average. We named this operation IGDN.

In the case of Gaussianization, the exponents in the parametric form of GDN are necessary to model
tail behavior of the Gaussianized densities. Since tail behavior is less important here, we chose
to simplify the functional form, fixing ↵ = 2 and " = 1/2, and forcing the weight matrix to be
symmetric (i.e., �

ij

= �
ji

). The GDN joint activation function is then given by the relation

y
i

=

x
i

�
�
i

+

P
j

�
ij

x2
j

� 1
2

, (7)

where the vectors x and y hold the linear and normalized activations at one spatial location across
feature maps, respectively, and the vector � and the symmetric matrix � are parameters of the
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original (cropped) jpeg:  9094 bytes,  RMSE: 12.032

jpeg2000:  8362 bytes,  RMSE: 11.264 3-stage GDN:  8360 bytes,  RMSE: 8.16

[Balle et al., in preparation]
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original (cropped) jpeg:  9851 bytes,  RMSE: 18.84

jpeg2000:  8127 bytes,  RMSE: 18.37 3-stage GDN:  8115 bytes,  RMSE: 15.95

[Balle et al., in preparation]
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[Balle et al., in preparation]
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• is found throughout biological sensory systems
• can be implemented as an invertible nonlinear 

transform
• can Gaussianize natural signals, eliminating 

dependencies
• can mimic human perception of visual 

distortions
• can be used, cascaded, for image compression
• but we need a more complete characterization/

design toolbox!

Local gain control...
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