
Decoding

Statistical Analysis and Modeling of Neural Data

Eero Simoncelli

10 October 2007



the scientist’s perspective

P(spikes | stim)



the organism’s perspective

P(stim | spikes)

The organism receives sensory responses, and 
must make judgements about the stimulus, 
remember it, or act on it.
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Probabilistic description

• P(spikes | stim) : forward model

• P(stim | spikes) : inverse model

• Optimal (ML) decisions [on board]:

- one neuron: threshold rules

- two neurons: linear discriminators, 
correlations
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“vector” decoding 
[Kalaska, Caminiti 
Georgopoulous, 

1983]

A sum of 
vectors, 
weighted by 
firing rate, 
predicts arm 
movement... 



Response to wind direction of 
4 cercal cricket interneurons  [Theunissen & Miller ‘91]



Linear population decoding, cricket cercal 
interneurons  [Salinas & Abbott ‘94]



• ML for independent Poisson neurons

• ML with Gaussian tuning curves

• ML with von Mises tuning curves

• “vector rule” with cosine tuning curves

• OLE

• Cramer-Rao Bound



ML decoding

For neurons with homogeneous tuning curves f_k(x) 
and independent Poisson spiking, ML gives:

∂
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log p(Nk|x) =
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∂x
log fk(x) = 0



In the special case of Gaussian tuning curves,  ML 
estimate is simply a sum of the peak locations of 
each tuning curve, weighted by the number of spikes

x̂ =

∑
k
Nkxk∑
Nk



In the special case of von Mises tuning curves 
(exponential of cosine),  ML estimate is angle of a 
vector computed as the weighted sum of unit 
vectors in the peak direction of each tuning curve,  
weighted by the number of spikes

θ̂ = !
∑

k

Nkuk
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ML decoding

For neurons with homogeneous tuning curves f_k(x) 
and independent Poisson spiking, ML gives:
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tuning curves for orientation [49]. If we rank the neurons
by their preferred orientations, the population response to
a trial of particular orientation q0 takes the form of a hill of
activity (Figure 4b). On any given trial, the shape of the
hill is corrupted by near-Poisson noise. To decode such
noisy population codes, one can use a Bayesian decoder
which returns the posterior distribution over q given the
hill of activity, p(qjA) [50,51]. For independent Poisson
noise, the posterior distribution is Gaussian, with its
mean controlled mostly by the position of the peak of the
hill and the variance inversely proportional to the gain of
the hill [46]. This is because, for Poisson noise, the
variance of the spike count is proportional to the gain.
This implies that the signal-to-noise ratio – the ratio of the
gain over the square root of the variance – grows with the
square root of the gain. Therefore, a high gain entails a
high signal-to-noise ratio, and a narrow posterior distri-
bution. Consequently, the noisy hill of activity can be
treated as a neural code for the posterior, with the position
of the peak encoding the mean, and the amplitude (or
gain) encoding the variance.

Deneve et al. [47] have designed a network architecture
that uses gain-encoding to perform optimal Bayesian
inferences. They applied their network to the problem of
locating an object based on its sound and image. On each
trial, the network is initialized with two noisy population
codes for the position of an object in visual and auditory
coordinates (Figure 5). It then performs two tasks. First, it
remaps the visual input into auditory coordinates and vice
versa, through a basis function layer. This is a prerequi-
site for combining these signals because the visual system
encodes the location of the object in retinal coordinates
whereas the auditory system uses head-centered coordi-
nates. The basis function units act as the building blocks
of the transformation: they compute Gaussian functions of
the visual and auditory input that are combined to
approximate both changes of coordinates, just as a set of
cubes can be combined to approximate any three dimen-
sional shape. Second, the network recovers the maximum
likelihood estimate of the object position given the visual
and auditory inputs (Figure 5). This computation is the
result of a relaxationprocess that turns thenoisypopulation
codes into smooth hills of activity over time. For a particular
value of the network parameters, these smooth hills of
activity peak very close to themaximum likelihood estimate

of the position. The cues are integrated with weights
proportional to their reliability because noisy hills with
high gain – corresponding to more reliable cues – provide a
stronger initial push and, as a result, have a stronger
influence of the final state of the network [47,52].

Although originally applied to object localization, this
architecture can be generalized to any cue integration
problem. In particular, this approach can be used to
account for the performance of human observers in the
experiments on cue integration [26–32]. The model can
also be extended to time varying problems, such as
estimating the position of a moving arm [4].

The gain-encoding model suggests a particularly intri-
guing role for Poisson variability. At first sight, it would
appear that this variability is highly detrimental and
severely limits the accuracy with which cortical circuits
perform computations. The gain-encoding idea suggests
that Poisson noise might in fact be very beneficial: it
allows population codes to represent the mean as well as
the variance of the encoded variables, the latter being
crucial for Bayesian inferences.

It is important to emphasize that the different encoding
schemes we have reviewed are not mutually exclusive.
Uncertainties can take many forms; for example, the
uncertainty due to photon noise in the retina has little to
dowith theambiguity due to theapertureproblem inmotion
processing. It is therefore possible that the brain uses
multiple encoding schemes. Ultimately, which schemes are
used in the brain can be answered only empirically. It is our
hope that the accumulation of behavioral data showing that
neural computation is akin to a Bayesian inference, and the
development of several models of Bayesian inference in
neural networks, will compel neurophysiologists to design
experiments to test the predictions of these models.

Discussion
We have described psychophysical evidence that shows
human observers to behave in a variety of ways like
optimal Bayesian observers. Themost compelling features
of these data in regard to the Bayesian coding hypothesis
are: (i) that subjects implicitly ‘adjust’ cue weights in a
Bayes’ optimal way based on stimulus and viewing
parameters; (ii) that perceptual and motor behavior reflect
a system that takes into account the uncertainty of
both sensory and motor signals; (iii) that humans behave
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Figure 4. Inferences with gain encoding. (a) Idealized Gaussian tuning curves to orientation for 16 cells in primary visual cortex. (b) Response of 64 cells with Gaussian tuning
curves similar to the ones shown in (a), in response to an orientation ofK208. The cells have been ranked according to their preferred orientation and the responses have been
corrupted by independent Poisson noise, a good approximation of the noise observed in vivo. (c) The posterior distribution over orientation obtained from applying a
Bayesian decoder to the noisy hills shown in (b). With independent Poisson noise, the peak of the distribution is given by the peak of the noisy hill, and the width of the
distribution (i.e. the uncertainty) is inversely proportional the amplitude of the noisy hill. Adapted from Ref. [47].
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Cramer-Rao Bound 
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Fisher Information of model neuron, assuming
Poisson firing, Gaussian tuning

IF (s) =
∑

n

[f ′

n(s)]2

fn(s)



Linear temporal 
decoding [Rieke 

etal, 1997]


