
  

Modeling the fMRI time series
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General linear model
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N: number of time points in the time series.
L: number of regressors in the design matrix.

NxL matrix Lx1 vector

Solve: y = X p

Answer: popt = X#y
where popt are parameter 
estimates and # means 
pseudo-inverse.



  

Simple (one parameter) example
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One parameter example (cont)

=

M
ea

su
re

d 
ti

m
e 

se
ri

es

Unknown
parameter

p

Nx1 vector Nx1 vector

H
IR

F 
* 

bl
oc

k 
al

te
rn

at
io

n Solve: y = x p
where y and x are both 
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Least Squares Optimization

The following is a brief review of least squares optimization and constrained optimization
techniques. I assume the reader is familiar with basic linear algebra, including the Singular
Value decomposition (as reviewed in my handout Geometric Review of Linear Algebra).

Least squares (LS) problems are those in which the objective function may be expressed as a
sum of squares. Such problems have a natural relationship to distances in Euclidean geometry,
and the solutions may be computed analytically using the tools of linear algebra.

1 Regression

Least Squares regression is the most basic form of LS optimization problem. Suppose you
have a set of measurements, yn gathered for different parameter values, xn. The LS regression
problem is to find:

min
p

N∑

n=1

(yn − pxn)2

We rewrite the expression in terms of column N -vectors as:

min
p

||!y − p!x||2

Now we describe three ways of obtaining the solution. The traditional (non-linear-algebra)
approach is to use calculus. If we set the derivative of the expression with respect to p equal
to zero and solve for p, we get:

popt =
!yT!x

!xT!x
.

Technically, one should verify that this is a minimum (and not a maximum or saddle point) of
the expression. But since the expression is a sum of squares, we know the solution must be a

• Author: Eero Simoncelli, Center for Neural Science, and Courant Institute of Mathematical Sciences.
• Created: 15 February 1999. Last revised: 21 July 2003.
• Send corrections or comments to eero.simoncelli@nyu.edu

Least-squares regression

Find p to make xn p as close as possible to yn for all n. That is, 
choose p to minimize: 
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Or, in vector notation: 
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Solution 1 (using calculus). Take the derivative of the above 
expression, set it equal to zero, and solve for p:

  

Least-squares regression (cont)

Solution 2 (using geometry). Find the scale factor p such that 
the scaled vector p x is as close as possible (in Euclidean 
distance) to y. Geometrically, we know that the scaled vector 
should be the projection of y onto the line in the direction of 
x:

minimum.

A second method of obtaining the solution
comes from considering the geometry of the
problem in the N -dimensional space of the
data vector. We seek a scale factor, p, such
that the scaled vector p!x is as close as possi-
ble (in a Euclidean-distance sense) to !y. Ge-
ometrically, we know that the scaled vector
should be the projection of !y onto the line in
the direction of !x:

p!x = (!y · x̂)x̂ =
(!y · !x)
||!x||2 !x

Thus, the solution for p is the same as above.

y

x

p x

A third method of obtaining the solu-
tion comes from the so-called orthogonality
principle. The concept is that the error vec-
tor for the optimal p should be perpendicular
to !x:

!x · (p!x − !y) = 0.

Solving for p gives the same result as above.

y

x

px-y
error

Generalization: Fitting with a basis set

The basic regression problem generalizes to fitting the data with a sum of basis functions, fmn:

min
{pm}

N∑

n=1

(yn −
∑

m

pmfmn)2

or in matrix form:
min

!p
||!y − F!p||2

where F is a matrix whose columns contain the basis functions. For example, if we wanted
to include an additive constant in the fitting done in the previous section, F would contain a
column with the xn’s, and another column of all ones.

As before there are three ways to obtain the solution: using (vector) calculus, using the geom-
etry of projection, or using the orthogonality principle. The geometric solution can be greatly
simplified by first computing the SVD of matrix F [verify]. The orthogonality method is the
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Least-squares regression (cont)

Solution 3 (using the orthogonality principle). The error 
vector for the best p is perpendicular to x:

minimum.
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Least-squares regression (multiple 
parameters)

Find best p for satisfying: y = X p
Answer: popt = X# y
where popt are parameter estimates and # is pseudo-inverse:

   X# = (XT X)-1 XT 

One way to see this is as a generalization of the orthogonality 
principle. The error vector should be perpendicular to all of 
the basis vectors (columns of X):
   XT (y - X p) = 0
Solving for p gives the above expression.

→ →

→→
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Multiple regression (cont)

Find best p for satisfying: y = X p
  popt = X# y

  X# = (XT X)-1 XT 

Another way to see this is algebraically:

   (XT X)-1 XT y = (XT X)-1 XT X p

   (XT X)-1 XT y = popt

→

→

→→

→

Identity matrix

→

  

Multiple regression (cont)

Find best p for satisfying: y = X p
  popt = X# y

  X# = (XT X)-1 XT 

Matlab code:
   p = pinv(X)*y;
or
	

 	

 	

 p = X\y;

→

→→
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Multiple regression (cont)

Find best p for satisfying: y = X p
  popt = X# y

  X# = (XT X)-1 XT 

•Is XT X always invertible? If not, why not?

•What is the interpretation for the values 
corresponding to each element of popt? Is the 
meaning of each value independent of the 
other elements?
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Trivial example
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All the voxels at once
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N: number of time points in the time series.
M: number of voxels.
L: number of regressors in the design matrix.

NxN  Toeplitz
matrix

NxL
matrix

p1,M

pL,M

LxM matrix
(1 col/voxel)

Ti
m

e 
se

ri
es

 (v
ox

el
 M

)

Y = X P
Popt = X

#Y

  

Event-related fMRI experiment
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Event-related analysis
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Neural response for 
each trial type
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Nx1 vector

N: number of time points in the time series.
L: number of trial types.
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Event-related design matrix

p1 is neural response 
to trial type 1
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“Deconvolution” analysis
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Deconvolution design matrix
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Nx1 vector

N: number of time points in the time series.
L: number of time points in the HRF for each of 2 trial types.
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Statistics

1. How well does the model fit the data?

2. What are the confidence intervals/error 
bars on the parameter estimates?

3. Are the parameter estimates different from 
zero? Different from each other?

4. Which of the regressors contribute to 
fitting the data?


