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Outline
• Information

– Why calculate information?
– What is it?
– Why is it challenging to estimate? 
– What are some useful strategies for neural 

data?
– Examples

• Maximum entropy methods
– Data analysis
– Stimulus design

• Homework



Information: Why Calculate It?

• An interesting, natural quantity
– Compare across systems (e.g., “one spike per bit”)
– Determine the constraints on a system (e.g., 

metabolic cost of information)
– See where it is lost (e.g., within a neuron)
– Insight into what the system is “designed” to do
– A non-parametric measure of association

• To evaluate candidates for neural codes
– What statistical features are available?

• Can precise spike timing carry information?
• Can neuronal diversity carry information?

– What codes can be rigorously ruled out?



Even in visual cortex, the neural 
code unknown

What physiologists say:
• Neurons have definite 

selectivities ( “tuning”) 
• Tuning properties can 

account for behavior
What physiologists also 

know:
• Responses depend on multiple 

stimulus parameters
• Response variability (number of 

spikes, and firing pattern) is 
substantial and complicated

Hubel and Wiesel
1968



Some coding hypotheses

• At the level of individual neurons
– Spike count
– Firing rate envelope
– Interspike interval pattern, e.g., bursts

• At the level of neural populations
– Total population activity
– Labeled lines
– Patterns across neurons
– Synchronous spikes
– Oscillations



Coding by intervals can be faster 
than coding by count

coding by count 
(rate averaged 

over time)

coding by 
interval pattern

One short interval 
indicates a change!

Tradeoff: firing 
must be regular

Signaling a step 
change in a 

sensory input
time



Coding by rate envelope supports 
signaling of multiple attributes

more spikes

m
ore transient time

Codes based on spike patterns can also 
support signaling of multiple attributes.



• Count, rate, and pattern are interdependent 

• We’d have to manipulate count, rate, and 
pattern selectively AND observe an effect 
on behavior

• So, we need some guidance from theory

A direct experimental test of a 
neural coding hypothesis is difficult

“Time is that great gift of nature which 
keeps everything from happening at 
once.” (C.J. Overbeck, 1978)



Information = 
Reduction in Uncertainty

(Claude Shannon, 1948)

• Reduction in uncertainty from 6 possibilities 
to 2

• Information = log(6/2)

Observe a 
response ?    ??    ?    ?

?    ?    ?



A priori knowledge
?      ?      ?
?      ?      ?

In a bit more detail:

A posteriori
knowledge

Two
spikes

One
spike

No
spikes

…
Observe a response



Second-guessing shouldn’t help
Two

spikes
One
spike

No
spikes

…

Maybe there 
really should have 

been a spike?

Maybe these two 
kinds of responses 
should be pooled?

The “Data Processing Inequality”:
information cannot be increased by re-analysis.



Information on independent channels should add

log(6/2) = log(3)

Observe a 
response

Observe a 
response

Color channel

Shape channel

log(6/3) = log(2)

Observe a 
response

Both channels

log(6/1) = log(6)

log(6) = log(3 × 2) = log(3) + log(2)



Surprising Consequence

Data Processing Inequality
+ 

Independent channels combine additively
+

Continuity
=

Unique definition of information, up to a constant



Information: Difference of Entropies

Information ={Entropy of the a priori distribution of input 
symbols}

minus 
{Entropy of a posteriori distribution of input symbols, given the 

observation k, averaged over all k}
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Information: Symmetric Difference of Entropies
output symbol (k)
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{entropy of output}+{entropy of input} -{entropy of table} 
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Information: Properties

I is independent of labeling within input and output

I is symmetric in input and output

),(),( ZXIYXI ≥
Data Processing Inequality:  if Y determines Z, then
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Information: Related Quantities
Channel capacity

maximum information for any input ensemble

Efficiency
{Information}/{Channel capacity}

Redundancy
{Information from all channels}

{sum of informations from each  channel}
1 -

Redundancy Index
{Information from all channels}

{sum of informations from each  channel}
1 -

{Information from all channels}
{maximum of informations from each  channel}

1 -



Investigating neural coding:  not 
Shannon’s paradigm

• Shannon
– symbols and codes are known
– joint (input/output) probabilities are known
– what are the limits of performance?

• Neural coding
– symbols and codes are not known
– joint probabilities must be measured
– ultimate performance often known (behavior)
– what are the codes?



Information estimates depend on 
partitioning of stimulus domain

finely 
partitioned

response 
domain

stimulus 
domain

unambiguous; 
H=log(4) bitss r

coarsely 
partitioned

unambiguous but 
detail is lost; 
H=log(2) bitss r



Information estimates depend on 
partitioning of response domain

finely partitioned:
unambiguous; 
H=log(4) bits

response 
domain

stimulus 
domain

s r

coarsely 
partitioned:
ambiguous,
H=log(2) bits

r



Information estimates depend on 
partitioning of response domain, II

finely partitioned:
unambiguous; 
H=log(4)=2 bits

response 
domain

stimulus 
domain

s r

wrongly
partitioned:
ambiguous,

H=log(1)=0 bits

r



Revenge of the Data Processing Inequality

Should these 
responses be 
grouped into 

one code 
word?

Data Processing Inequality says NO: If you group, 
you underestimate information

time time time



The Basic Difficulty

We want to determine <p log p>, but we only have an estimate 
of p, not its exact value.  Dividing stimulus and response 
domains makes p small.  This increases the variability of 
estimates of p.

p log p is a nonlinear function of p.

Replacing <p log p> with <p>log<p> incurs a bias.

How does this bias depend on p?

We need to divide stimulus and response domains finely, to 
avoid underestimating information (“Data Processing Theorem”).

But that’s not all…



Biased Estimates of -p log p

0 0.1 0.5 1
0

0.2

0.4

f(p)= - p log p

p

f´´(p)= - 1/p
Downward bias is 
greatest where f´´

is greatest.0.01 0.05 0.1
0

0.1

0.2



The Classic Debiaser:
Good News/ Bad News

We don’t have to debias every p log p term, just the sum.

The bad news:

Unless N>>k, the asymptotic correction may 
be worse than none at all.

We don’t know what k is.

More bad news:

The plug-in entropy estimate has an asymptotic bias 
proportional to (k-1)/N, where N is the number of 
samples and k is the number of different symbols
(Miller, Carlton, Treves, Panzeri).

The good news (for entropy of a discrete distribution):



Another debiasing strategy
Toy problem:

<x2> ≠ <x>2

x

x2

For a parabola, bias is constant. Bias depends on the best local parabolic 
approximation. This leads to a polynomial 

debiaser. (Paninski)  

<- p log p> ≠ -<p>log<p>
Our problem:

-p log p

p

Better than classical debiaser, but p=0 is 
still worst case. And it still fails in the 

extreme undersampled regime.

This is why the naïve estimator 
for variance can be simply 

debiased:

σ2
est=<(x-<x>)2>/(N-1)



The “Direct Method”

• Discretize the response into binary “words”

• Tletter must be small to capture temporal detail
– timing precision of spikes: <1 ms

• Tword must be “large enough”
– insect sensory neuron: 12 -15 ms may be adequate
– Vertebrate CNS:  100 ms at a minimum

• Up to 2^(Tword/Tletter) probabilities to be estimated

0 0 1 0 0 0 1 1 0 0 1 0

Tword
Tletter

(Strong, de Ruyter, Bialek, et al. 1998)



Multiple neurons: a severe sampling problem
• One dimension for each bin and each neuron

• 2^[L(Tword / Tletter)] probabilities must be estimated.

Tword
Tletter

1 0 0 0 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 1 0 0 1 0

L



• Spike trains are events in time
• So there are relationships between them:

– a continuous topology
– discrete relationships: how many spikes?  (and on which 

neurons?)

• How can we exploit this?

What else can we do?



Strategies for Estimating Entropy and Information

most require comparison of two entropy estimates

Smooth 
dependence 

on spike 
times?

NOSpike train 
as a symbol 
sequence

“Smooth” 
dependence 

on spike 
count?

power series

binless
embedding

stimulus reconstruction

NO

metric 
space 

YES

Spike train 
as a point 
process

YES

in
cr

ea
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ng
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od
el

 s
tre

ng
th

Relationship 
between 
symbol 

sequences?

direct

NO YES

context tree

LZW compression

bottleneck/codebook

Markov



Binless Embedding Method in a nutshell

Victor, Phys Rev E (2002)

In each r-dimensional stratum, use Kozachenko-Leonenko
(1987) nearest-neighbor estimate

λ
λ

−
≈ −

−∑ ∑*

11ln( ) ln
ln2 ln2 1

j k k

j kj

N NrI
N N N

responses 
with 0 spikes

t1

responses 
with 1 spike

t1

t 2

responses 
with 2 spikes

t1

t 2

t 3

responses with 3 
spikes

Embed responses with r spikes as points in an r-dimensional space

λj

λj
*

r = 2



Strategies for Estimating Entropy and Information
Smooth 

dependence 
on spike 
times?

NOSpike train 
as a symbol 
sequence

“Smooth” 
dependence 

on spike 
count?

power series

binless
embedding

stimulus reconstruction

NO

metric 
space 

YES

Spike train 
as a point 
process

YES

Relationship 
between 
symbol 

sequences?

direct

NO YES

context tree

LZW compression

bottleneck/codebook

Markov



Coding hypotheses: in what ways can 
spike trains be considered similar?

Similar spike counts

Similar spike 
times

Similar interspike intervals



• Define the “distance” between two spike trains as 
the simplest morphing of  one spike train into the 
other by inserting, deleting, and moving spikes

• Unit cost to insert or delete a spike
• We don’t know the relative importance of spike 

timing, so we make it a parameter, q: shift a spike 
in time by ΔT incurs a cost of q ΔT

• Spike trains are similar only if spikes occur at 
similar times (i.e., within 1/q sec), so q measures 
the informative precision of spike timing

Measuring similarity based on spike times

A

B



Identification of Minimal-Cost Paths
A

B

The algorithm is closely analogous to the Needleman-Wunsch & Sellers 
(1970) dynamic programming algorithms for genetic sequence comparisons.

“World lines” cannot cross.  
So, either

(i) The last spike in A is 
deleted,

(ii) The last spike in B is 
inserted

(iii) The last spike in A and 
the last spike in B must 
correspond via a shift



Distances between all pairs of responses 
determine a response space

etc.

responses to stimulus 1

responses to stimulus 2

responses to stimulus 3

calculate all 
pairwise 
distances



Random: responses to the 
four stimuli are interspersed

Configuration of the response space tests 
whether a hypothesized distance is viable

Systematic clustering:
responses to the stimuli are grouped

and
nearby groups correspond to similar 

stimuli



Metric Space Method in a nutshell

Victor and Purpura, Network (1997)

Information =            
row entropy + column 

entropy  - table entropy

1 1 1

1 2

1 1 2

1 1

assigned cluster

ac
tu

al
  s

tim
ul

us

Cluster the responses

Create a “response space” 
from the distances

Allowed elementary transformations:
– insert or delete a spike: unit cost
– shift a spike in time by ΔT: cost is q ΔT

A
B

Postulate a parametric family of  edit-length 
metrics (distances”) between spike trains
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Visual cortex: contrast responses
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interspike 
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code



Multiple visual sub-modalities

contrast

orientation

spatial frequency

texture type



Attributes are coded in distinct ways
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Analyzing coding across multiple neurons

• Cost to insert or delete a spike: 1
• Cost to move a spike by an amount ΔT: q ΔT
• Cost to change the label of a spike:  k

time

ne
ur

on
s

A multineuronal activity pattern

is a time series of labeled events

Distances between labeled time series can also be defined as the
minimal cost to morph one into another, with one new parameter:

k determines the importance of the neuron of origin of a spike.
• k=0: summed population code
• k large: labeled line code



Multineuronal Analysis via the Metric-Space 
Method: A two-parameter family of codes

im
po

rta
nc

e 
of

 

ne
ur

on
 o

f o
rig

in 
(k)

importance of timing (q)

summed population codes

labeled-line codes

spike count 
code

• Change the time of a spike: cost/sec = q
– q=0: spike count code

• Change the neuron of origin of a spike: cost = k
– k=0: summed population code : (neuron doesn’t matter)
– k=2: labelled line code (neuron matters maximally)



• Recordings from 
primary visual cortex 
(V1) of macaque 
monkey

Preparation

• Multineuronal 
recording via tetrodes
– ensures neurons are 

neighbors (ca. 100 
microns)



The stimulus set: a cyclic domain

16 kinds of stimuli in the full stimulus set
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Discrimination is not enough

• Information indicates discriminability 
of stimuli, but not whether stimuli are 
represented in a manner amenable 
to later analysis

• Do the distances between the 
responses recover the geometry of 
the stimulus space? 



Representation of phase by a neuron pair
stimuli

neuron 1

reconstructed response space:
each neuron considered separately

neuron 2

Representation of stimulus space is more faithful 
when neuron-of-origin of each spike is respected.

respect neuron of origin (k=1)
summed population code (k=0)

reconstructed response space: two neurons considered jointly



Representing Taste
reconstructed response spaces

spike count code

spike timing code,
informative precision q ~ 200 msec

Temporal pattern supports full 
representation of the 4 primary 
tastes and their 6 mixtures 

responses of rat solitary tract neuron

salty bitter sour sweet

100 
spikes 
per sec

5 sec

P. DiLorenzo, J.-Y. Chen, SfN 2007

4 primary 
tastes

salty

bitter

sour

sweet

6 mixtures



Summary: Estimation of Information-
Theoretic Quantities from Data

• It is challenging but approachable

• There is a role for multiple methodologies
– Methodologies differ in assumptions about how the 

response space is partitioned
– The way that information estimates depend on this 

partitioning provides insight into neural coding

• It can provide some biological insights
– The temporal structure of spike trains is informative
– (Adding parametric tools): temporal structure can 

represent the geometry of a multidimensional sensory 
space



Maximum-Entropy Methods
• The maximum-entropy criterion chooses a specific 

distribution from an incomplete specification
– Typically unique: the most random distribution consistent 

with those specifications
– Often easy to compute (but not always!)

• Maximum-entropy distributions
– General characteristics
– Familiar examples
– Other examples

• Applications



General Characteristics of Maximum-
Entropy Distributions

• Setup
– Seek a probability distribution p(x) on a specified domain 
– Specify constraints C1, …, CM of the form ΣCm(x)p(x)=bm
– Domain can be continuous; sums become integrals
– Constraints are linear in p but may be nonlinear in x

• C(x)=x2 constrains the variance of p
– Maximize H(p)=-Σp(x)logp(x) subject to these constraints

• Solution
– Add a constraint C0=1 to enforce normalization of p
– Lagrange multipliers λm for each Cm
– Maximize -Σp(x)logp(x)+ΣλmΣCmp(x)
– Solution: p(x)=exp{ΣλmCm(x)}, with the multipliers λm are determined 

by ΣCm(x)p(x)=bm
• These equations are typically nonlinear, but occasionally can be solved 

explicitly
• The solution is always unique (mixing property of entropy)



Examples of Maximum-Entropy Distributions
• Univariate

– On [a, b], no constraints: uniform on [a, b]
– On [-∞,∞], variance constrained:  Kexp(-cx2)
– On [0, ∞], mean constrained:  Kexp(-cx)
– On [0, 2π], Fourier component constrained: Von Mises

distribution, Kexp{-c cos(x-φ)}
• Multivariate

– Mean and covariances constrained: Kexp{(x-m)TC(x-m)}
– Independent, with marginals P (x), Q(y):  P(x)Q(y)

• Discrete
– On {0,1} on a 1-d lattice, with m-block configurations 

constrained: the mth-order Markov processes
– On {0,1} on a 2-d lattice, with adjacent pair 

configurations constrained:  the Ising problem



Wiener/Volterra and Maximum-Entropy
• Wiener-Volterra systems identification: Determine the nonlinear functional F 

in a stimulus-response relationship r(t)=F[s(t)]
– Discretize prior times: s(t)=(s(t-Δt), …, s(t-LΔt))= (s1, …, sL)
– Consider only the present response: r=r(0)
– F is a multivariate Taylor series for r in terms of (s1, …, sL) 
– Measure low-order coefficients, assume others are 0

• Probabilistic view
– Same setup as above, find P(r,s)=P(r, s1, …, sL)
– Measure some moments

• Mean and covariance of s: <sj>, <sjsk>,…
• Cross-correlations: <rsj>, <rsjsk>,…
• Mean of r: <r>
• Variance of r: <r2>

– Find the maximum-entropy distribution constrained by the above
– This is Kexp{-c(r-F(s1,…,sL))2}

• The Wiener-Volterra series with additive and Gaussian noise is the 
maximum-entropy distribution consistent with the above constraints

• What happens if the noise is not Gaussian (e.g., spikes?)

Victor and Johanessma, 1986



Some Experiment-Driven Uses of 
Maximum-Entropy Methods

• Rationale: since it is the most random 
distribution consistent with a set of 
specifications, it can be thought of as an 
automated way to generate null hypotheses

• Modeling multineuronal activity patterns
– Spontaneous activity in the retina: Shlens et al. 

2006, Schneidman et al. 2006
– Spontaneous and driven activity in visual cortex: 

Ohiorhenuan et al. 2007
• Designing stimuli



Analyzing Multineuronal Firing Patterns
Consider three neurons A, B, C.  If all pairs are uncorrelated, then we 
have an obvious prediction for the triplet firing event, namely 
p(A,B,C)=p(A)p(B)p(C). But if we observe pairwise correlations, what 
do we predict for p(A,B,C), and higher-order patterns?

A

B

C

D

Use constrained maximum-entropy distributions, of course.

),p( 1 ),p( 1 Measure

Find the maximum-entropy distribution, and use to predict

),p(
1 

),p(
1

).p( 1 1
1 1
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Multineuronal Firing Patterns: Retina
Maximum-entropy 
distributions built from 
pairs account for joint 
activity of clusters of 
up to 7 cells (macaque 
retina, Shlens et al., J. 
Neurosci. 2006)

And only nearest-
neighbor pairs matter.

Also see Schneidmat et al., Nature 2006 (15 cells), and review in 
Current Opinion In Neurobiology, 2007 (Nirenberg and Victor)



Significance of Maximum-Entropy Analysis

• The pairwise model dramatically simplifies the 
description of multineuronal firing patterns
– Reduction from 2N parameters to N(N-1)/2 parameters
– Further reduction to ~4N parameters if only nearest 

neighbors matter
– It makes sense in terms of retinal anatomy

• Limitations
– What about firing patterns across time?
– What about stimulus driving?
– What about cortex (connectivity is more complex) 



log2-likelihood ratio: model vs. observed
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Multineuronal Firing Patterns: Visual Cortex

Maximum-entropy distributions built from pairs do not account for joint activity 
of clusters of 3-5 cells (macaque V1, Ohiorhenuan et al., CoSyNe 2006)



Multineuronal Firing Patterns: Visual Cortex

Higher-order correlations are stimulus-dependent! 
(Ohiorhenuan et al., SfN 2007)

Analyzing stimulus-dependence

reverse correlation with 
pseudorandom checkerboard 
(m-sequence) stimuli

number of conditioning pixels

lo
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-20
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1 2 3 40

construct a pairwise maximum entropy 
model conditioned on one or more 
stimulus pixels that modulate the 
response probability distribution



Maximum Entropy and Stimulus Design
• We’d like to understand how cortical neurons 

respond to natural scenes
• How can we determine what aspects of natural 

scenes make current models fail?
• Maximum-entropy approach:  incrementally add 

constraints corresponding to natural-scene 
image statistics
– Gaussian white noise or binary noise: resulting 

models are OK for retinal ganglion cells, poor in V1 
– Gaussian 1/f2 noise: in V1, >50% of variance not 

explained
– How about adding higher-order statistical 

constraints?
• Which ones to add?
• How do they interact?



Dimensional Reduction of Image Statistics

others are notsome are visually salient

Image statistics can be studied in isolation by creating 
binary images with a single statistic constrained:

the mean value of the product of luminance 
values (+1 or -1) in a “glider” of several cells

When two image statistics are constrained, simple combination 
rules account for the visual salience of the resulting texture.

Victor and Conte 1991, 2006



Homework
• Debiasing entropy estimates: Given an urn with an unknown but finite 

number of kinds of objects k, and an unknown number nk of each kind of 
object, and N samples (with replacement) from the urn, estimate k. 

– Does it help to use a jackknife debiaser?
– Does it help to postulate a distribution for nk? 
(Treves and Panzeri, Neural Computation 1995)

• The Data Processing Inequality: Shannon’s mutual information is just one 
example of a function defined on joint input-output distributions. 

– Are there any others for which Shannon information holds? 
– If so, are they useful?

(Victor and Nirenberg, submitted 2007)

• Maximum-entropy distributions: Consider a Poisson neuron driven by a 
Gaussian noise. Build the maximum-entropy distribution constrained by 
the overall mean firing rate, input power spectrum, and spike-triggered 
average. Fit this with a linear-nonlinear (LN) model.

– What is the nonlinearity’s input-output function?
– Is the spike-triggered covariance zero?
(?? and Victor)


