
G80.3042.002 – Fall 2007

Statistical Analysis and Modeling of Neural Data

Homework 2

Due: 31 Oct 2007

Your results should be in the form of a MATLAB file (typically, the filename should have an
extension of .m). Email your solutions to eero@cns.nyu.edu and bijan@cns.nyu.edu.

1. Decoding a pair of neurons.

Imagine two neurons, each generating spikes according to a Poisson process. Consider the
problem of discriminating between two stimuli (call them A and B). Assume that the two
neurons respond to these stimuli with rates r1(A) = r2(A) = 1, r1(B) = 3, and r2(B) = 12,
in units of spikes during the (arbitrary) fixed time interval that the stimulus is presented.

(a) Compute the ML decision rule neuron 2 (by itself). Specifically, generate a binary vector
corresponding to the ML decision for all spike counts over the range [0, 20] (timesaver:
use poisspdf to compute the Poisson probability). Determine the performance (per-
cent correct) for this decision rule, when applied to an equal number of presentations
of the two stimuli. Check this by simulating 1000 responses from the model neuron for
each stimulus (you can use the function poissonrnd), and computing the percentage
of correct answers given by your decision rule. Explain (in words) what you would
need to change in this construction if the two stimuli were not equally likely to occur
(e.g., if you wanted to optimize percent correct but s = 0 occurs twice as often as s = 1).

(b) Now compute the ML rule for the joint responses, ~r = [r1r2], assuming they are in-
dependent. Specifically, calculate a binary image containing the decision rule for all
pairs of spike counts in the range [0, 20] × [0, 20]. Again, compute both the actual and
simulated percentage of correct answers for this decision rule.

(c) Simulate 1000 joint responses for each stimulus, and use these to compute the Fisher
Linear Discriminant (see http://www.cns.nyu.edu/ eero/NOTES/LeastSquares.pdf
if you don’t remember how to do this). For this problem, the discriminant is ~d =
(CA+CB)−1(µB−µB), where the {µ, C} are means and covariances of the two stimulus-
conditioned response distributions. Given the discriminant ~d, the decision rule requires

that we compare the projected responses ~r · ~d to some threshold. Ordinarily, we’d like to
do this to maximize the likelihood of projected responses, but this is a messy numerical

problem. Instead, select this threshold as the value such that (1 − c( ~rA · ~d)) = c( ~rB · ~d),
where cis the cumulative distribution (compute by generating a histogram, computing
the cumulative with cumsum, and solving for the crossing point using interp1 assum-
ing linear interpolation). Plot your decision boundary ( a straight line) on top of a plot
of the optimal ML rule from the previous part (a binary image). How do they compare?
Compute the percentage of correct answers for this decision rule- how does it compare
to that of the previous part?

(d) Now consider a correlated spiking model. Specifically, imagine that the conditional re-
sopnse of the second neuron is Poisson with rate r2(A|N1) = ⌊1+2N1⌋ and r2(B|N1) =
⌊12 + 2N1⌋. Note this is reminiscent of (but not precisely the same as) what might arise
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in the GLM model presented in a few weeks ago in class. Compute the joint likelihood
for each of the stimuli (you’ll need to compute this using p(N1, N2) = p(N2|N1)p(N1)).
Compute the ML decision rule and compare to previous results. Again, repeat using
the Fisher Linear Discriminant. Compare the discriminant to the ML rule, and compare
the percent correct for a sample data set.

(e) Finally, assume the neurons are anti-correlated, such that rate r2(A|N1) = ⌊1 − 0.75N1⌋
and r2(B|N1) = ⌊12 − 0.752N1⌋. Again compute the ML rule, and the FLD solutions,
and compare,both visually and in terms of percent correct.

2. Decoding LFP activity.

For this problem, you will work with another example data set recorded from area LIP of
an awake, behaving monkey. This data set contains simultaneous recordings of three LFP
signals at sites a few hundred microns apart during the delay period as a monkey performs
delayed reach-and-saccade movement to a peripheral target.

Data format: The data is organized in one data structure Data with the fields Lfp1, Lfp2,
Lfp3, containing three Lfp recordings, and Target containing the target index for each trial.
The data is organized in 500 ms per trials with one trial per row. The signals are sampled at
1kHz. The target indices for each trial go from 1-8 around the circle, where 1 is to the right,
2 is up-right, 3 is up and so on until 8, which is down-right.

Software: You have been given a matlab function to estimate smoothed spectral estimates,
dmtspec.m. Place this program in the path of your matlab session. To estimate the spec-
trum of an Lfp signal with W Hz smoothing for each trial use the command spec1 =
dmtspec(Lfp1,[.5,W],1e3);. This will return an array of spectra one for each trial
from DC to 500 Hz. help dmtspec will return some documentation. When working with
spectral power, always take the log before analyzing the signal further. it i.e. work with
log(spec1).

(a) Estimate the spectral tuning curve for each Lfp signal across all eight directions for each
frequency using a 5 Hz smoothing parameter. What is the preferred target direction of
each recording? Does it vary with frequency? How can you determine whether the
variations at a given frequency are statistically significant? What can you say about the
signal at frequencies below 100Hz? Above 200Hz? Above 300Hz?

(b) Select the trials to one preferred target direction common to all recordings and the op-
posite target direction. Construct a response vector using activity from all three Lfp
recordings. For each frequency, separately apply Fisher’s linear discriminant to dis-
criminate trials when the target direction was in the preferred and anti-preferred di-
rections. Use the approach given in Question 1c. What is the performance at each
frequency?

(c) Assuming the log LFP power is Gaussian-distributed around the tuning curve, and in-
dependent across channels, construct the ML rule using the Log-likelihood ratio, again
separately for each frequency. Apply the ML rule you have derived to classify the trials
into the two classes. What is the performance at each frequency? Compare with the
Fisher Linear Discriminant and comment. Are the assumptions you made reasonable
ones? How would you modify your model to address its limitations?

(d) Repeat the above exercise using a 40 Hz smooth parameter. How does the performance
change? Comment.


