| Instructors: | Bijan Pesaran & Eero Simoncelli |
| Time: | Mondays and Wednesdays, 9:15-10:55 am |
| Location: | Meyer Hall, rm 815, 4 Washington Place |
| Prerequisites: | Content of Mathematical Tools for Neural Science, including: calculus, linear algebra, linear systems theory, basic probability/statistics, basic estimation/decision, some matlab programming experience. |
| Date | Lecturer | Topic | Handouts | Homework |
|---|---|---|---|---|
| 5 Sep | Pesaran/Simoncelli | Intro to course Some examples from the literature |
Course description Student info sheet |
|
| 10 Sep | Simoncelli | Spiking models, fitting/estimation, nonparametric case | Paper: Spike-triggered analysis (pdf) | |
| 12 Sep | Simoncelli | Parametric models, maximum likelihood methods, optimization | Slides (pdf) Paper: Max likelihood fitting (pdf) |
|
| 17 Sep | Pesaran | Probabilistic models of point processes | Slides (ppt) | |
| 19 Sep | Pesaran | Point processes: measures of association I | Slides (ppt) | |
| 24 Sep | Pesaran | Point processes: measures of association II, Spectral representation |
Slides (ppt) | |
| 26 Sep | Pesaran | Point process coherence. Model validation. | Slides (ppt) | HW1 (pdf) data file (mat) Due: 10 Oct |
| 1 Oct | Simoncelli | Fitting an LNP model | ||
| 3 Oct | Simoncelli | Fitting a GLM model | Slides (pdf) | |
| 8 Oct | Columbus Day Holiday | |||
| 10 Oct | Simoncelli | Decoding I: decisions from one neuron | ||
| 15 Oct | Simoncelli | Decoding II: multi-neuron decisions, estimation | ||
| 17 Oct | Pesaran | Temporal decoding I | HW2 (pdf) dmtspec.m, dpsschk.m data file (mat) Due: 31 Oct |
|
| 22 Oct | Pesaran | Temporal decoding II: Kalman filter | ||
| 24 Oct | Simoncelli | Kalman: Interpretation & Examples | ||
| 29 Oct | Simoncelli | Estimation from neural responses: ML, linear, Cramer-Rao bounds |
Slides (pdf) | |
| 31 Oct | Souheil Inati | Estimation of brain activity from fMRI BOLD measurements | Slides (pdf), Readings (zip) | |
| 5 Nov | No class: SfN meeting | |||
| 7 Nov | No class: SfN meeting | |||
| 12 Nov | Pesaran | Spectral estimation I | Slides (ppt) | |
| 14 Nov | Pesaran | Spectral estimation II | ||
| 19 Nov | Simoncelli | Introduction to Information Theory | ||
| 21 Nov | Jonathan Victor | Information Theory: Experimental Data Analysis | Slides (pdf) | |
| 26 Nov | Simoncelli | Efficient Coding | ||
| 28 Nov | Nathaniel Daw | Models of Reinforcement Learning | Slides (ppt) |
HW3 (pdf) data file (mat) Due: 7 Dec |
| 3 Dec | Simoncelli | Efficient Coding | ||
| 5 Dec | Pesaran | Spike sorting | Slides (ppt) | |
| 10 Dec | Pesaran | Unsupervised learning | ||
| 12 Dec | Simoncelli |
HW4 (pdf) data file (mat) Due: 17 Dec |
| Top of page | |