Instructors: | Bijan Pesaran & Eero Simoncelli |
Time: | Mondays and Wednesdays, 9:15-10:55 am |
Location: | Meyer Hall, rm 815, 4 Washington Place |
Prerequisites: | Content of Mathematical Tools for Neural Science, including: calculus, linear algebra, linear systems theory, basic probability/statistics, basic estimation/decision, some matlab programming experience. |
Date | Lecturer | Topic | Handouts | Homework |
---|---|---|---|---|
5 Sep | Pesaran/Simoncelli | Intro to course Some examples from the literature |
Course description Student info sheet |
|
10 Sep | Simoncelli | Spiking models, fitting/estimation, nonparametric case | Paper: Spike-triggered analysis (pdf) | |
12 Sep | Simoncelli | Parametric models, maximum likelihood methods, optimization | Slides (pdf) Paper: Max likelihood fitting (pdf) |
|
17 Sep | Pesaran | Probabilistic models of point processes | Slides (ppt) | |
19 Sep | Pesaran | Point processes: measures of association I | Slides (ppt) | |
24 Sep | Pesaran | Point processes: measures of association II, Spectral representation |
Slides (ppt) | |
26 Sep | Pesaran | Point process coherence. Model validation. | Slides (ppt) | HW1 (pdf) data file (mat) Due: 10 Oct |
1 Oct | Simoncelli | Fitting an LNP model | ||
3 Oct | Simoncelli | Fitting a GLM model | Slides (pdf) | |
8 Oct | Columbus Day Holiday | |||
10 Oct | Simoncelli | Decoding I: decisions from one neuron | ||
15 Oct | Simoncelli | Decoding II: multi-neuron decisions, estimation | ||
17 Oct | Pesaran | Temporal decoding I | HW2 (pdf) dmtspec.m, dpsschk.m data file (mat) Due: 31 Oct |
|
22 Oct | Pesaran | Temporal decoding II: Kalman filter | ||
24 Oct | Simoncelli | Kalman: Interpretation & Examples | ||
29 Oct | Simoncelli | Estimation from neural responses: ML, linear, Cramer-Rao bounds |
Slides (pdf) | |
31 Oct | Souheil Inati | Estimation of brain activity from fMRI BOLD measurements | Slides (pdf), Readings (zip) | |
5 Nov | No class: SfN meeting | |||
7 Nov | No class: SfN meeting | |||
12 Nov | Pesaran | Spectral estimation I | Slides (ppt) | |
14 Nov | Pesaran | Spectral estimation II | ||
19 Nov | Simoncelli | Introduction to Information Theory | ||
21 Nov | Jonathan Victor | Information Theory: Experimental Data Analysis | Slides (pdf) | |
26 Nov | Simoncelli | Efficient Coding | ||
28 Nov | Nathaniel Daw | Models of Reinforcement Learning | Slides (ppt) |
HW3 (pdf) data file (mat) Due: 7 Dec |
3 Dec | Simoncelli | Efficient Coding | ||
5 Dec | Pesaran | Spike sorting | Slides (ppt) | |
10 Dec | Pesaran | Unsupervised learning | ||
12 Dec | Simoncelli |
HW4 (pdf) data file (mat) Due: 17 Dec |
![]() | |
Top of page |