PSYCH-GA.2211/NEURL-GA.2201 — Fall 2024
Mathematical Tools for Neural and Cognitive Science

Homework 4

Due: 17 Nov 2024
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please don’t
procrastinate until the day before the due date... start now!

1. Bayesian inference of eye color. A male and female chimpanzee have blue and brown
eyes, respectively. The brown-eyed allele is denoted with a capital B, and the blue-eyed allele
with a lowercase b. Assume a simple genetic model in which the gene for brown eyes is always
dominant (so that the trait of blue eyes can only arise from two blue-eyed genes, but the trait
of brown eyes can arise from two brown-eyed genes, or one blue and one brown). Children get
one allele from each parent. You can also assume: i) the a priori probability of the mother
being BB (or Bb) is 50%); and ii) the a priori probability that a child is born with any one
of the four gene configurations from the two parents is 25%. For each question, provide the
math, and explain your reasoning.

(a) Suppose you observe that they have a single child with brown eyes. Conditioned on this
observation, what is the probability that the female chimp has a blue-eyed gene?

(b) Suppose you also observe that they have a second child with brown eyes. Condiitoned on
both observations, what is the probability that the female chimp has a blue-eyed gene?

(¢) Generalizing, suppose you observe that they have N children, all of whom have brown
eyes... express the probability that the femle chip has a blue-eyed gene, as a function of
N.

2. Poisson neurons. The Poisson distribution is commonly used to model neural spike counts:
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where k£ (a non-negative integer) represents the spike count over some pre-specified time
interval, and p (a non-negative real number) is the rate, which specifies the expected spike
count in that interval.

(a) Visualize the (truncated) Poisson distribution. Set the expected number of spikes to
i = 6 spikes/interval then create a vector p of length 21, whose elements contain the
probabilities of Poisson spike counts for & = [0...20]. Since we’re truncating the range
at a maximum value of 20, you'll need to normalize the vector so it sums to one (the
distribution given above is normalized over the range from 0 to infinity) so that the
vector p represents a valid probability distribution. Plot p in a bar plot and compute
and mark the mean firing rate. Is it equal to 4?7 Why or why not?
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(b) Write a function that generates num samples from a distribution p specified by a vector
(such as the truncated Poisson distribution you created in the previous part), samples
= randp(p, num). [Hint: see class slides: use the rand function, which generates real
values over the interval [0...1], and partition this interval into portions proportional in
size to the probabilities in p]. Test your function by drawing 1,000 samples from the
truncated Poisson distribution in (a), plotting a histogram of how many times each value
is sampled, and comparing this to the true frequencies specified by p. Verify qualitatively
that the answer gets closer (converges) as you increase the number of samples (try 10
raised to powers (2, 3,4, 5]).

(¢) Imagine you're recording with an electrode from two neurons simultaneously, whose
spikes have very similar waveforms (and thus are not easily distinguished by your spike
sorting software). Create a probability vector, g, for the second neuron, assuming a
mean rate of 3 spikes/interval. What is the probability distribution of the observed
spike counts, which will be the sum of spike counts from the two neurons derived from p
and q7 [Hint: the distribution vector should have length m+mn—1 when m and n are the
lengths of the two input PDFs.] Verify your answer by comparing it to the histogram of
1,000 samples generated by adding samples from the two distributions (generated using
randp).

(d) Now imagine you are recording from a neuron with mean rate 9 spikes/interval (the sum
of the rates from the two neurons above). Plot the distribution of spike counts for this
neuron, in comparison with the distribution of the sum of the previous two neurons.
Based on the results of these two experiments, if we record a new spike train, can you
tell whether the measured spikes came from one or two neurons just by looking at the
distribution of spike counts? Can you explain this based on properties of the Poisson
distribution?

3. Analyzing and simulating experimental data. An international coffee conglomerate
recruits you to characterize the neuropsychology underlying their customers’ adoration of
pumpkin spice. You devise a blood-oxygen level dependent (BOLD) fMRI pilot experiment
in which you present one of two classes of odorants to an individual while monitoring the
activity of three key voxels located in the amygdala, a structure known to be associated
with emotional responses. The file experimentData.mat contains: a (N X 3) matrix data,
where each row is the BOLD response of the three voxels on a given trial relative to some
baseline; and a (NN x 1) vector trialConds indicating the experimental condition of each
trial. Condition 1 includes trials in which you present an odorant selected randomly from a
library of possible control odorants, and condition 2 includes trials in which the trade-secret
pumpkin-spice odorant is presented.

(a) Before doing anything quantitative with your data, it is always good practice to visualize
it. First, determine how many trials of each condition were completed. Display this
information as a 2-bin histogram with each bin representing each of the two possible
conditions, and their heights representing their respective trial counts. Next, plot a
3D scatter plot of the recorded responses, with each point color-coded according to its
associated condition (use the function scatter3 in Matlab (or see footnote! for Python)
and be sure to label your axes). Describe your data qualitatively using this figure. Is

!Make sure you run from mpl_toolkits.mplot3d import Axes3D and Ymatplotlib notebook at some
point. Then run fig = plt.figure(); ax = fig.add_subplot(111l, projection(‘3d’)); ax.plot(‘‘whatever
you want’’). Note that this does not work in Colab, and you need to have Jupyter notebook on your own computer
for interactive 3D plots.
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there a noticeable difference between the two conditions? What geometric shape are
these ‘response clouds’, and what distribution would you use to model them?

Quantify the response statistics of each individual condition. Calculate the means of each
response cloud, as well as their respective covariance matrices. Compute the covariance
matrices of each response cloud using matrix multiplication (remember to center the
data first). Verify that your calculation is correct by comparing with the output given
by the cov function. How do the covariance matrices compare between condition 1 and
condition 2 (are they similar at all or wildly different)?

Next, compute the SVD of each covariance matrix. Plot the three singular vectors
originating from the center of each response cloud and scale their amplitude by the
square root of the singular values. Relative to how similar the covariance matrices were
before computing their SVD, how do each condition’s respective set of singular values
compare? Describe what this tells us about the relationship between the two conditions
and, more fundamentally, the relationship between the three voxels across conditions.

A powerful method to validate a model is by generating (i.e., simulating) new data
matching your quantitative description of the real data, and then comparing them with
real data. Write a function samples = ndRandn(mean, cov, num) that generates a
set of samples drawn from an N-dimensional Gaussian distribution with the specified
mean (an N-vector) and covariance (an NxN matrix). The parameter num should be
optional (defaulting to 1) and should specify the number of samples to return. The
returned value should be a matrix with num rows each containing a sample of N elements.
[Hint: generate samples from an N-dimensional Gaussian with zero mean and identity
covariance matrix, and then transform these to achieve the desired mean and covariance.]
Test your function for p = [3,5] and C = [10, —4; —4, 5], drawing 1,000 points. Compute
the sample mean and sample covariance of your simulated data, and compare to the
requested mean and covariance.

Now create a function simResponses = odorExperiment (numTrialsl,numTrials?2)

where numTrialsl and numTrials2 are the number of trials in a simulated experiment
for condition 1 and 2, respectively. simResponses is an (/N x 3) matrix containing
simulated responses of each of your 3 voxels during N = numTrialsl + numTrials2
trials. Plot the simulated and real responses in the same figure (use subplots if you
wish). Is your simulated response data a good characterization of the real amygdala
voxel responses?



