
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2024
Mathematical Tools for Neural and Cognitive Science

Homework 1

Due: 26 Sept 2024
(late homeworks penalized 10% per day)

Please: don’t wait until the day before the due date... start now! [Click here for submission
instructions]

Important! Unless we specify otherwise, do not use the [MATLAB Linear Algebra Library] or
Python np.linalg library or equivalent functions from other built-in libraries for this homework
(for example, the norm and inv functions). In general, write things to express the underlying
math, using the multiplication operator (which may require transposing some matrices or vectors).
You are welcome (encouraged, even!) to write your own functions to carry out more complex
computations.

1. Inner product with a unit vector. Given a unit N -dimensional vector û, and an arbitrary
N -dimensional vector v⃗, write the following (Matlab or Python) functions:

(a) A function named projection that returns a vector that is the component of v⃗ lying
along the direction û.

(b) A function named ortho that returns a vector that is the component of v⃗ that is orthog-
onal (perpendicular) to û, and

(c) A function named distance that returns the distance from v⃗ to the line that lies along
direction specified by û.

û, Verify that your code is working by testing it on random vectors û and v⃗ (generate these
using randn in Matlab or np.random.randn in Python. Remember to re-scale û so that
it has unit length). First, do this visually with 2-dimensional vectors, by plotting û, v⃗, and
the two components described in (a) and (b). (hint: execute axis equal in Matlab or
plt.axis(‘equal’) in Python to ensure that the horizontal and vertical axes have the same
units). Then test it numerically in higher dimensions (e.g., 4) by writing expressions to verify
each of the following, and executing them on a few randomly drawn vectors v⃗:

• the vector in (a) points in the same (or opposite) direction as û.

• the vector in (a) is orthogonal to the vector in (b).

• the sum of the vectors in (a) and (b) is equal to v⃗.

• the value returned by (c) is equal to the magnitude (norm) of the vector in (b).

• the sum of squared lengths of the vectors in (a) and (b) is equal to ||v⃗||2.

2. Experimentally testing a system for (non)linearity. There is no coding required for
this part (though you are welcome to use code or math to help explain your thought process).
Please create a separate text or markdown cell for each subproblem.

https://www.cns.nyu.edu/~eero/math-tools23/Homework/HWsubmissionInstructions-2023.pdf
https://www.cns.nyu.edu/~eero/math-tools23/Homework/HWsubmissionInstructions-2023.pdf
https://www.mathworks.com/help/matlab/linear-algebra.html?s_tid=CRUX_lftnav
https://numpy.org/doc/stable/reference/routines.linalg.html

2

Consider each of the systems below. We observe a set of input-output pairs in the form
of input → output. For each system, determine whether the system could be a linear system.
If not, explain your reasoning.

If yes, provide a matrix M that is consistent with the examples provided, and state whether
M is unique (i.e., the only matrix that could explain these observations).

(a) System 1:

0 −→ [2, -3]

(b) System 2:

[2, 3] −→ 9
[-1, 2] −→ 4

(c) System 3:
[-1, 2] −→ [0, 2]
[3, 1] −→ [-1, 1]
[0, 7] −→ [-2, 7]

(d) System 4:
[3, 2] −→ [-4, 1]

[-6, -4] −→ [8, -2]

3. Geometry of linear transformations. The files sysN.p (where N=1,2,3,4) each provide a
function that implements a linear system whose input and output are both 2-dimensional vec-
tors. These are “pre-compiled” Matlab files where you can apply the function to inputs and
see the result, but you cannot see the source code. In Python, download linear systems2020.py

and import the mystery functions into your workspace using from linear systems2020

import sys1, sys2, sys3, sys4. For each of these:

(a) Generate 30 random 2D inputs using randn or Python equivalent. Compute the corre-
sponding outputs. Plot 30 line segments from each input to output, labeling input and
output with different symbols or colors. Use hold on in Matlab (no need in Python),
and plot points at start and end of each segment. Describe, in words, what the system
is doing to the input space.

(b) Characterize the system, by measuring its response to impulses, and embedding these
in a matrix M . Compute the SVD of this matrix, and explain how the components of
the SVD relate to the description you provided in the previous part.

(c) Generate a data matrix P with 8 columns corresponding to the vertices and faces of a
square of size 2x2 centered at the origin. If you start on the horizontal axis, and work
counter-clockwise, the first few vectors are (0, 1), (1, 1), (1, 0), (1,−1).... Plot a single
blue curve through these points, and a red star (asterisk) at the location of one of the
vertices (e.g., second point in example above). Now consider and discuss the action of

3

the matrix M on this set of points. In particular, apply the transformations derived
from the SVD of the matrix M one at a time to the full set of points (again, think of a
way to do this without using a for loop!), plot each of the transformations, and describe
what geometric changes you see (and why).

4. A simple visual neuron. There is no coding required for this part. Please create a separate
text or markdown cell for each subproblem.

You are a biologist exploring a previously unexplored island in the South Pacific. You come
across a new species of salamander and decide to characterize how its visual system works.

You find a retinal neuron that responds only to the intensity of light at 5 different localized
regions on the retina - we can represent the intensity at these 5 regions as a vector v⃗ =
[v1, v2, v3, v4, v5], where the components are all non-negative. The output r of the retina is a
weighted sum of the intensities at each location; specifically, r = v1+2.3v2+1.5v3+ v4+6v5.

(a) Is this system linear? If so, express the response as a matrix multiplied by the input
intensity vector v. If not, explain why not.

(b) What unit-length stimulus vector (i.e., vector of light intensities) elicits the largest re-
sponse in this neuron? Write out your reasoning and explain how you know this is the
largest possible response. [hint: try to reason through what this looks like geometrically
in 2D! What kind of relationship must exist between r and the weights for the response
to be large?]

(c) What physically-realizable unit-length stimulus vector produces the smallest response in
this neuron? Explain your reasoning. [hint: try to reason through what this would look
like geometrically in 2D! What does it mean for a vector to be physically realizable?]

5. Gram-Schmidt. A classic method for iterative construction of an orthonormal basis is
known as Gram-Schmidt orthogonalization. First, one generates an arbitrary unit vector
(typically, by normalizing a vector created with randn in Matlab or np.random.normal

in Python). Each subsequent basis vector is created by generating another arbitrary vector,
subtracting off the projections of that vector along each of the previously created basis vectors,
and normalizing the remaining vector. The output should be a matrix of random unit vectors
all of which are orthogonal to each of the other vectors in the matrix.

Write a function gramschmidt that takes a single argument, n, specifying the dimensionality
of the basis. It should then generate an n×nmatrix whose columns contain a set of orthogonal
normalized unit vectors. Try your function for n = 3, and plot the basis vectors (you can
use rotate3d in Matlab or see footnote1 in Python to interactively examine these). Check
your function numerically by calling it for an n much larger than 3 (e.g. 1000) and verifying
that the resulting matrix is orthonormal (hint: you should be able to do this without using
loops). Check that both the columns and the rows separately satisfy the conditions of being
orthonormal. Extra credit: Make your function recursive – instead of using a for loop, have
the function call itself, each time adding a new column to the matrix of previously created
orthogonal columns. To do this, you’ll probably need to write two functions (a main function
that initializes the problem, and a helper function that is called with a matrix containing the

1Make sure you run from mpl toolkits.mplot3d import Axes3D and %matplotlib notebook at some
point. Then run fig = plt.figure(); ax = fig.add subplot(111, projection(‘3d’)); ax.plot(‘‘whatever

you want’’). Note that this does not work in Colab, and you need to have Jupyter notebook on your own computer
for interactive 3D plots.

4

current set of orthogonal columns and adds a new column until the number of column equals
the number of rows).

6. Null and Range spaces. Imagine you have a linear system characterized by matrix M ,
which takes as input a vector, v⃗, and outputs a vector, y⃗, such that y⃗ = Mv⃗. For this question,
you may use svd or np.linalg.svd.

(a) Explain in a few sentences what the null and range spaces of the matrix are.

(b) Imagine that a creature has a linear tactile system: it takes a vector input (of pressure
measurements) and produces a vector of neural responses. If the system has a non-zero
null space, what does this tell you about the creature’s perceptual capabilities?

(c) Load the file mtxExamples-2024.mat into your Matlab world (use scipy.io.loadmat
in Python). You’ll find a set of matrices named mtxN, with N = 1, 2...5. For each
matrix, use the SVD to: (1) determine if there are non-trivial (i.e., non-zero) vectors
in the input space that the matrix maps to zero (i.e., determine if there’s a nullspace).
If so, write a Matlab or Python expression that generates a random example of such
a vector, and verify that the matrix maps it to the zero vector; (2) generate a random
vector y that lies in the range space of the matrix, and then verify that it’s in the range
space by finding an input vector, x, such that Mx = y. Please create a separate code
cell for each matrix.

