Mathematical Tools for Neural and Cognitive Science

Fall semester, 2024

Section 5: Statistical Inference and Model Fitting

• The distribution $p(\bar{x})$ converges to a Gaussian (mean μ_x and variance σ_x^2/N): formally, the "Central Limit Theorem"

Test statistic

- We calculate how far the observed value of the sample average is away from its expected value.
- In units of standard error.
- In this case, the test statistic is

$$z = \frac{\overline{x} - \mu}{SE} = \frac{\overline{x} - \mu}{\sigma / \sqrt{N}}$$

• Compare to a distribution, in this case z or N(0,1)

Ι	Does]	NZT improve IQ	scores or not?	
		Rea		
		Yes	No	
sion	Yes	Correct	Type I error α-error "False alarm"	
Decision	No	Type II error β -error "Miss"	Correct	

Significance levels

- Are denoted by the Greek letter α .
- In principle, we can pick anything that we consider unlikely.
- In practice, the consensus is that a level of 0.05 or 1 in 20 is considered as unlikely enough to reject H_0 and accept the alternative.
- A level of 0.01 or 1 in 100 is considered "highly significant" or "really unlikely".

Is "Statistically significant" a synonym for:

- Substantial
- Important
- Big
- Real

Does statistical significance gives the

- probability that the null hypothesis is true
- probability that the null hypothesis is false
- probability that the alternative hypothesis is true
- · probability that the alternative hypothesis is false

Meaning of *p*-value. Meaning of CI.

Student's *t*-test

- σ not assumed known
- Use $s^{2} = \frac{\sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)^{2}}{N - 1}$
- Why *N*-1? *s* is unbiased (unlike ML version), i.e., $\mathbb{E}(s^2) = \sigma^2$
- $t = \frac{\overline{x} \mu_0}{s / \sqrt{N}}$ • Test statistic is
- Compare to t distribution for CIs and NHST
- "Degrees of freedom" reduced by 1 to N-1

Other frequentist univariate tests

- χ² goodness of fit
 χ² test of independence
- test a variance using χ^2
- *F* to compare variances (as a ratio)
- Nonparametric tests (e.g., sign, rank-order, etc.)

Estimation of model parameters (outline)

- How do I compute estimates from data?
- How "good" are my estimates?
- How well does my model explain data to which it was fit? Other data (prediction/generalization)?
- How do I compare models?

Estimation

- An "estimator" is a function of the data, intended to provide an approximation of the "true" value of a parameter
- Traditionally, one evaluates estimator quality in terms of error mean ("bias") and error variance (as before: MSE = bias² + variance)
- Traditional statistics aims for an unbiased estimator, with minimal variance ("MVUE")
- More nuanced view: trade off the bias and variance, through model selection, "regularization", or Bayesian "priors"

The maximum likelihood estimator (MLE)

Sample average is appropriate when one has direct measurements of the thing being estimated. But one may want to estimate something (e.g., a model parameter) that is *indirectly* related to the measurements...

Natural choice: assuming a probability model $p(\vec{x} | \theta)$ find the value of θ that maximizes this "likelihood" function

 $\hat{\theta}(\{\vec{x}_n\}) = \arg\max \prod p(\vec{x}_n|\theta)$ $= \arg\max_{\theta} \sum \log p(\vec{x}_n | \theta)$

Example: Estimate the probability of a flipped coin landing "heads" up, by observing some samples

Properties of the MLE

- In general, the MLE is asymptotically *unbiased* and *Gaussian*, but can only rely on these if:
 - you have lots of data
 - the MLE can be computed
 - the likelihood model is correct
- Estimates of confidence:
 - SEM (relevant for sample averages)
 - second deriv of NLL (multi-D: "Hessian")
 - simulation (of estimates by sampling from $p(x|\hat{\theta})$)
 - bootstrapping (resample from *the data*, with replacement)

Bootstrapping

- "The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps" [Adventures of Baron von Munchausen, by Rudolph Erich Raspe]
- A (**re**)**sampling** method for computing estimator dispersion (incl. stdev error bars or confidence intervals)
- Idea: instead of looking at distribution of estimates across repeated experiments, look across repeated resampling (with replacement) from the *existing* data ("bootstrapped" data sets)

	strokes	subjects	
aspirin group:	119	11037	
placebo group:	98	11034	(1.3)
$\widehat{\theta} = \frac{119/1}{98/1}$	$\frac{11037}{1034} = 1$.21.	(1.4)

 $.93 < \theta < 1.59$ (1.5)

with 95% confidence. This includes the neutral value $\theta = 1$, at which aspirin would be no better or worse than placebo vis-à-vis strokes. In the language of statistical hypothesis testing, aspirin was found to be significantly beneficial for preventing heart attacks, but not significantly harmful for causing strokes.

[Efron & Tibshirani '98]

Permutation test: example

- Given {n1,n2} measurements under two different conditions, are they significantly different (i.e., can we reject null hypothesis?)
- Measure difference in means, m2-m1
- Construct permuted sets of {n1,n2} measurements, and compute difference in means for each of these
- Ask: How far in the tail is the true difference in means? One-sided p-value is proportion of permutation values > m2-m1

MAP estimation - Gaussian case

For measurements with Gaussian noise, and assuming a Gaussian prior, posterior is Gaussian.

- MAP estimate is a weighted average of prior mean and measurement
- posterior is Gaussian, allowing sequential updating
- explains "regression to the mean", as shrinkage toward the prior

Regression to the mean

"Depressed children treated with an energy drink improve significantly over a three-month period. I made up this newspaper headline, but the fact it reports is true: if you treated a group of depressed children for some time with an energy drink, they would show a clinically significant improvement...."

"It is also the case that depressed children who spend some time standing on their head or hug a cat for twenty minutes a day will also show improvement."

- D. Kahneman

Permutation test: example

- Given {n1,n2} measurements under two different conditions, are they significantly different (i.e., can we reject null hypothesis?)
- Measure difference in means, m2-m1
- Construct permuted sets of {n1,n2} measurements, and compute difference in means for each of these
- Ask: How far in the tail is the true difference in means? One-sided p-value is proportion of permutation values > m2-m1