Mathematical Tools for Neural and Cognitive Science

Fall semester, 2024

Section 5: Statistical Inference and Model Fitting

The sample average $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$ What happens as N grows? • Variance of \bar{x} is σ_x^2/N (the "standard error of the mean", or SEM), and so converges to zero [on board] • "Unbiased": \bar{x} converges to the true mean, $\mu_x = \mathbb{E}(\bar{x})$ (formally, the "law of large numbers") [on board] • The distribution $n(\bar{x})$ converges to a Gaussian (mean U

• The distribution $p(\bar{x})$ converges to a Gaussian (mean μ_x and variance σ_x^2/N): formally, the "Central Limit Theorem"

Classical/frequentist approach - z

- In the general population, IQ is known to be distributed normally with
 - $\mu = 100, \ \sigma = 15$
- We give a drug to 30 people and test their IQ
- H1: NZT improves IQ
- H₀ ("null"): it does nothing

Test statistic

- We calculate how far the observed value of the sample average is away from its expected value.
- In units of standard error.
- In this case, the test statistic is

$$z = \frac{\overline{x} - \mu}{SE} = \frac{\overline{x} - \mu}{\sigma / \sqrt{N}}$$

• Compare to a distribution, in this case z or N(0,1)

Significance levels

- Are denoted by the Greek letter α .
- In principle, we can pick anything that we consider unlikely.
- In practice, the consensus is that a level of 0.05 or 1 in 20 is considered as unlikely enough to reject H_0 and accept the alternative.
- A level of 0.01 or 1 in 100 is considered "highly significant" or "really unlikely".

Common misconceptions

- Is "Statistically significant" a synonym for:
- Substantial
- Important
- Big
- Real

Does statistical significance gives the

- probability that the null hypothesis is true
- probability that the null hypothesis is false
- probability that the alternative hypothesis is true
- probability that the alternative hypothesis is false

Meaning of *p*-value. Meaning of CI.

Student's t-test

• σ not assumed known

• Use

$$s^{2} = \frac{\sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)^{2}}{N - 1}$$

• Why *N*-1? *s* is unbiased (unlike ML version), i.e., $\mathbb{E}(s^2) = \sigma^2$

• Test statistic is $t = \frac{\overline{x} - \mu_0}{s / \sqrt{N}}$

- Compare to *t* distribution for CIs and NHST
- "Degrees of freedom" reduced by 1 to N-1

The *z*-test for binomial data

- Is the coin fair?
- Lean on central limit theorem
- Sample is *n* heads out of *m* tosses
- Sample mean: $\hat{p} = n / m$
- H₀: p = 0.5
- Binomial variability (one toss): $\sigma = \sqrt{pq}$, where q = 1 p $\hat{p} - p_0$

$$2 = \frac{1}{\sqrt{p_0 q_0 / m}}$$

• Compare to *z* (standard normal)

$$\pm z_{\alpha/2} \sqrt{\hat{p}\hat{q}} / m$$

Other frequentist univariate tests

- χ^2 goodness of fit
- χ^2 test of independence
- test a variance using χ^2
- *F* to compare variances (as a ratio)
- Nonparametric tests (e.g., sign, rank-order, etc.)

2D

3D

4D

0.8

0.6

0.4

0.

0.6 0.4 0.2

0.8

0.6 0.4 0.2

Distribution of

angles of pairs of

Gaussian vectors

sin(theta)^(N-2)

2,3,4,8,32,128

Estimation of model parameters (outline)

- How do I estimate parameters from data?
- How "good" are my estimated parameters?
- How well does my model explain data to which it was fit? Other data (prediction/generalization)?
- How do I compare two models?

Estimation

- An "estimator" is a function of the data, intended to provide an approximation of the "true" value of a parameter
- One can evaluate estimator quality in terms of squared error, MSE = bias^2 + variance
- Traditional statistics often aims for an unbiased estimator, with minimal variance ("MVUE")
- More nuanced view: trade off bias and variance, through model selection, "regularization", or Bayesian "priors"

The maximum likelihood (ML) estimator

Sample average is appropriate when one has direct measurements of the thing being estimated. But one may want to estimate something that is *indirectly* related to the measurements...

Natural choice: assuming a probability model $p(\vec{x} | \theta)$ find the value of θ that maximizes this "likelihood" function

 $\hat{\theta}(\{\vec{x}_n\}) = \arg\max \prod p(\vec{x}_n|\theta)$ $= \arg\max_{\theta} \sum \log p(\vec{x}_n | \theta)$

Bootstrapping

- "The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps" [Adventures of Baron von Munchausen, by Rudolph Erich Raspe]
- A (re)sampling method for computing estimator dispersion (eg., stdev error bars or confidence intervals)
- Idea: instead of looking at distribution of estimates across repeated experiments, look across repeated resamplings (with replacement) from the *existing* data ("bootstrapped" data sets)

$$\widehat{\theta} = \frac{119/11037}{98/11034} = 1.21. \tag{1.4}$$

It now looks like taking a spirin is actually harmful. However the interval for the true stroke ratio θ turns out to be

$$93 < \theta < 1.59$$
 (1.5)

with 95% confidence. This includes the neutral value $\theta=1,$ at which aspirin would be no better or worse than placebo vis-à-vis strokes. In the language of statistical hypothesis testing, aspirin was found to be significantly beneficial for preventing heart attacks, but not significantly harmful for causing strokes.

[Efron & Tibshirani '98]

Permutation test

- Given {n1,n2} measurements under two different conditions, are they significantly different (i.e., can we reject null hypothesis?)
- Measure difference in means, m2-m1
- Construct permuted sets of {n1,n2} measurements, and compute difference in means for each of these
- Ask: How far in the tail is the true difference in means? One-sided p-value is proportion of permutation values > m2-m1

Bayesian inference: Gaussian case

For measurements with Gaussian noise, and assuming a Gaussian prior:

- posterior is Gaussian, allowing sequential updating
- precision is sum of measurement and prior precisions
- mean is precision-weighted average of prior mean and measurement
- explains "regression to the mean" as **shrinkage** toward the prior

Regression to the mean

"Depressed children treated with an energy drink improve significantly over a three-month period. I made up this newspaper headline, but the fact it reports is true: if you treated a group of depressed children for some time with an energy drink, they would show a clinically significant improvement...."

"It is also the case that depressed children who spend some time standing on their head or hug a cat for twenty minutes a day will also show improvement."

- D. Kahneman

