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Statistical Decision Theory
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Signal Detection Theory
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Tumor, or not?
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Signal Detection Theory (binary estimation)
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Measurement:

o
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Decision: L
(signal)

For equal-shape, unimodal, symmetric distributions,
the ML decision rule is a threshold function.




More generally, decision rule can have multiple thresholds. ..
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Signal Detection Theory: Potential outcomes

Doctor responds Doctor responds

p(x|N) “no” “yes®
Tumor miss hit
present
Tumor correct false
absent reject alarm

For threshold ¢, cumulatives c()
c(t1S) = p(miss)

! X 1-c(t1S) = p(hit)
decision c(tIN) = p(correct reject)
threshold 1-c(tIN) = p(false alarm)

MAP decision rule?

MAP solution maximizes proportion of correct
answers, taking prior probability into account.
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Compared to ML threshold, the MAP threshold moves
away from higher-probability option.




Bayes decision rule?

Incorporate values for the four possible outcomes:

Payoff Matrix

Response

Yes No
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Bayes Optimal Criterion
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E(Yes|x) = V;’f_‘}'vp(S + N|x)+ VA);”"'p(le)
E(No|x) = V¥, p(S + N|x) + Vi°p(N | x)

Say yes if E(Yes | x) > E(No | x)

Optimal Criterion

E(Yes|x) = VI, p(S+ N|x) + Vi¥p(N|x)

+

E(No|x) = V(S + N|x) + Vi°p(N | x)

Say yes if E(Yes | x) > E(No | x)
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Posterior odds

Say yes if > =
p(N|x) Vies, — Vo, V(Correct|S + N)




Apply Bayes’ Rule

Posterior Likelihood Prior
DS+ N|X)= p(X|S +N)p(S +N)

p(x)

“~—— Nuisance normalizing term

p(x [ N)p(N)

, hence
p(x)

P(N|x)=

P(S+N|x) =[p(x|S+N>][p(S+N>]
PNTx) | p(xIN) U p(N)

Posterior odds / \

Likelihood ratio Prior odds

Optimal Criterion

” p(S+N|x) S V(Correct | N)
p(N|x) — V(Correct|S+N)

Say yes i

e if p(xIS+N) __p(N) _V(Correct|N) _ P

p(x|N) — p(S+N)V(Correct|S +N) B

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one:

Example applications of SDT

« Vision
* Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,
frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)
* Neurometric function/discrimination by neurons (internal
response = spike count)

From experimental measurements, assuming human is optimal,
can we determine the underlying distributions and criterion?
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Signal Detection Theory: discriminability (d')

High noise,
lots of overlap

Low noise,
not much overlap

Internal response: probability of occurrence curves

Probability

Internal response
, _ “separation”
“width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions

Error rate is a function of d’

Criterion
Criterion
Distribution of internal Distribution of internal
responses when no
responses when tumor
tumor
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Signal Detection Theory: Criterion

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

SDT: Gaussian case

zZlp(CR)]  zlp(H)]

Probability

0 c d x
d' = z[p(H)] + z[p(CR)] = z[p(H)] — z[p(FA)]
c= Z[p(CR)] G(x; , — 1 —(x-u)*/20°
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ROC (Receiver Operating Characteristic)

Criterion #1

DN

Probability

Interni] response

Plot anti-cumulatives:
1-c(tI N) vs. 1-¢(t1S)

as threshold ¢ varies

Hits

False Alarms

ROC (Receiver Operating Characteristic)

Criterion #2

2N

Probability

Internal response

Hits

False Alarms

ROC (Receiver Operating Characteristic)

Criterion #3
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Probability

Internal rgsponse

Hits

False Alarms




ROC (Receiver Operating Characteristic)

Criterion #4

2N

Internal response

Probability
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ROC (Receiver Operating Characteristic)
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False-alarm rate
Area under the ROC

Area under curve = %correct in a 2AFC task]
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Slope of the ROC = likelihood ratio or posterior ratio if a
prior is used




Area under the ROC - Poisson case or with data:
Neurometric function and Choice probability
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Decision/classification in multiple dimensions

® Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean
® Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin

e Statistical:
o ML/MAP/Bayes under a probabilistic model
® c.g.: Gaussian, identity covariance (same as Prototype)
® c.g.: Gaussian, equal covariance (same as FLD)
® c.g.: Gaussian, general case (Quadratic Discriminator)

e Some Examples:
® Visual gender classification
® Neural population decoding

Linear Classifier

Find unit vector w (“discriminant™) that best separates the distributions
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Simplest linear discriminant: the Prototype Classifier

A —fip

W=
fia = fis]

Fisher Linear
Discriminant

Fisher

[ G, — i)’ .
max ——— (note: this is d’ squared!)
W [WTCyW + WTCpib ]

1
optimum: W = C~!(ii, — iiy), where C = E(CA + Cp)

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {w,b} s.t. c¢;(@w7 % —b) >m, Vi

X,




Reminder: Multi-D Gaussian densities
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ML (or MAP) classifier for two Gaussians
Decision boundary is quadratic, with four possible geometries:
Class1 3, Class 1

B

Simplest case:
equal covariances
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[figure: Pagan et al. 2016]

A perceptual example: Sex identification

* 200 face images (100 male, 100 female)
¢ Adjusted for position, size, intensity/contrast
¢ Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03]




Linear classifiers

SVM RVM Prot FLD

Four different linear classifiers, trained on human data

Model validation/testing

® Cross-validation: Subject responses
[% correct, reaction time, confidence] are
explained:

- very well by SVM
- moderately well by RVM / FLD
- not so well by Prot

® Do these decision “models”make testable
predictions? Synthesize optimally
discriminable faces...

Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]
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Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, et. al; NIPS*04]

Internal response: probability of occurrence curves

Probability

Internal response
, _ “separation”
“width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions

Error rate is a function of d’

Journal of Neurophysiology

Averbeck and Lee: Information and correlations
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Summarizing error of ML estimators

Bias: the MLE is asymptotically unbiased and Gaussian, but
can only rely on these if:

* the likelihood model is correct
* the likelihood can be maximized

* you have lots of data

Variance: (error bars)
* S.E.M. (relevant for sample averages only)
* second deriv of NLL (multi-D: “Hessian™)
* simulation (resample from p(z\@))
* bootstrapping (resample from the data, with replacement)

Fisher Information

* Second-order expansion of the (expected) negative log likelihood:

9 log p(r|s)
I(s) =—-E | —F————+
(9= | 2L
* Provides a bound on “precision” of unbiased estimators: ;2 (s) > 1
(the “Cramér-Rao bound”) — I(s)
* Perceptually, provides a bound on discriminability: -
(Series et. al. 2009) D(s) < v1(s)
* Examples: with mean stimulus response u(s)
Gaussian case:  p(r|s) ~ N (u(s), 02) I(s) = [/ (s)]* /o

Poisson case:  p(r|s) ~ Poiss(u(s))  1(s) = [/ (s)]*/u(s)

Example: Weber’s law [Weber, 1834]

1 (discrimination thresholds

D (s ) x s proportional to stimulus strength)

. 1 . . o
Assuming  I(s) o< — what internal representation can explain this? Many!
S

additive Gaussian Poisson noise, multiplicative Gaussian
noise, with mean with mean noise, with mean
u(s) =log(s)+c u(s) = [log(s) + cJ? p(s) = as
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response, p(rls)
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stimulus, s stimulus, s stimulus, s
entirely due to discrete representation, entirely due to
response mean depends on both mean response variance

[Fechner, 1860] and variance




S.S. Stevens. “To Honor
Fechner and Repeal His
Law: A power function, not
a log function, describes the
operating characteristic of a
sensory system” (1961)

Assuming Stevens is measuring internal
mean, can we combine with Weber’s Law?

sensitivity intensity

Loudness 087
09
0s

Brghiness 033

Brghiness 0s

Brghiness 0s

Brghiness '

Lghtness 12

Visuslengn |1

Visualarea 07

Radness

Toste 1

Taste e

Toste 08

Sme 0s

coa '

Warmtn 16

Warmin 13

Warmin o7

Discomtor.cold | 1.7

Discomfort, warm | 0.7
Thermal pain 1

Tactual oughness | 15
Tactual harcness |08
Finger span 13

Pressure onpaim | 1.1

Musdle force 7
Heaviness 145
Viscosity 042
Electric shock 35
fort "
Angular .
accoleration
Duration 11

‘Sound pressure of 3000 Hz
tone

Amplitude of 60 Hz on finger
Amplitude of 250 Hz on finger
5° target n dark

o fash
Point source brefy flashed
Roflctance of gray papers
Projected ine

Projected square

Red-gray mixture

Metal contact on arm
Matal contact on arm
Iractation of skin, small area
Iractation of skin, large area
Whale-body iradiation
Whole-body iradiation
Radiant heal on skin
Rubbing emery cloths
Squeezing rubber

Thicknoss of blocks

Statc force on skin

Statc contractons

Lited weights

Stiring icone flids
Gurent through fingers.

Vocal sound pressure
55 rotation

White-noise stimuli

S.S. Stevens. “To Honor Fechner
and Repeal His Law: A power
function, not a log function,
describes the operating
characteristic of a sensory
system” (1961)

Three examples with different
power-law mean response,
each consistent with Weber’s
law discriminability.

3 examples of Stevens’ power-law percept

stimulus, s

Weber’s law
2| D(s) x 1/
E
g
H
3

stimulus, s

[Zhou, Duong & EPS, 2022]




