Mathematical Tools for Neural and Cognitive Science

Fall semester, 2024

Section 5a: Statistical Decision Theory + Signal Detection Theory

Slope of the ROC = likelihood ratio or posterior ratio if a prior is used

Decision/classification in multiple dimensions

- Data-driven linear classifiers:
 - Prototype Classifier minimize distance to class mean
 - Fisher Linear Discriminant (FLD) maximize d'
 - Support Vector Machine (SVM) maximize margin
- Statistical:
 - ML/MAP/Bayes under a probabilistic model
 - e.g.: Gaussian, identity covariance (same as Prototype)
 - e.g.: Gaussian, equal covariance (same as FLD)
 - e.g.: Gaussian, general case (Quadratic Discriminator)
- Some Examples:
 - Visual gender classification
 - Neural population decoding

Simplest linear discriminant: the Prototype Classifier

$$\hat{w} = \frac{\vec{\mu}_A - \vec{\mu}_B}{\|\vec{\mu}_A - \vec{\mu}_B\|}$$

A perceptual example: Sex identification

- 200 face images (100 male, 100 female)
- Adjusted for position, size, intensity/contrast
- Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

Model validation/testing

- Cross-validation: Subject responses [% correct, reaction time, confidence] are explained:
 - very well by SVM
 - moderately well by RVM / FLD
 - not so well by Prot
- Do these decision "models"make testable predictions? Synthesize optimally discriminable faces...

Summarizing error of ML estimators

Bias: the MLE is *asymptotically unbiased* and *Gaussian*, but can only rely on these if:

- the likelihood model is correct
- the likelihood can be maximized
- you have lots of data

Variance: (error bars)

- S.E.M. (relevant for sample averages only)
- second deriv of NLL (multi-D: "Hessian")
- simulation (resample from $p(x|\hat{\theta})$)
- bootstrapping (resample from the data, with replacement)

S.S. Stevens. "To Honor Fechner and Repeal His Law: A power function, not a log function, describes the operating characteristic of a sensory system" (1961)

Assuming Stevens is measuring internal mean, can we combine with Weber's Law?

Loudness	0.67	Sound pressure of 3000 Hz tone
Vibration	0.95	Amplitude of 60 Hz on finger
Vibration	0.6	Amplitude of 250 Hz on finger
Brightness	0.33	5° target in dark
Brightness	0.5	Point source
Brightness	0.5	Brief flash
Brightness	1	Point source briefly flashed
Lightness	1.2	Reflectance of gray papers
Visual length	1	Projected line
Visual area	0.7	Projected square
Redness (saturation)	1.7	Red-gray mixture
Taste	1.3	Sucrose
Taste	1.4	Salt
Taste	0.8	Saocharin
Smell	0.6	Heptane
Cold	1	Metal contact on arm
Warmth	1.6	Metal contact on arm
Warmth	1.3	Irradiation of skin, small area
Warmth	0.7	Irradiation of skin, large area
Discomfort, cold	1.7	Whole-body irradiation
Discomfort, warm	0.7	Whole-body irradiation
Thermal pain	1	Radiant heat on skin
Tactual roughness	1.5	Rubbing emery cloths
Tactual hardness	0.8	Squeezing rubber
Finger span	1.3	Thickness of blocks
Pressure on palm	1.1	Static force on skin
Muscle force	1.7	Static contractions
Heaviness	1.45	Lifted weights
Viscosity	0.42	Stirring silicone fluids
Electric shock	3.5	Current through fingers
Vocal effort	1.1	Vocal sound pressure
Angular acceleration	1.4	5 s rotation
Duration	1.1	White-noise stimuli

system" (1961)	$\mu(s) \propto s^{1.7}$	
Three examples with different power-law mean response, each consistent with Weber's law discriminability.	stimulus, s $\mu(s) \propto \mu(s)$ $\mu(s) \propto s^{0.3}$ $\mu(s) \propto s^{0.3}$ $\mu(s) \propto s^{0.3}$ $\mu(s) \propto s^{0.3}$ $\mu(s) \propto s^{0.3}$	
	[Zhou, Duong & EPS, 2022]	