Mathematical Tools for Neural and Cognitive Science

Fall semester, 2024

Section 5a: Statistical Decision Theory + Signal Detection Theory

Slope of the ROC = likelihood ratio or posterior ratio if a prior is used

Decision/classification in multiple dimensions

- Data-driven linear classifiers:
 - Prototype Classifier minimize distance to class mean
 - Fisher Linear Discriminant (FLD) maximize d'
 - Support Vector Machine (SVM) maximize margin
- Statistical:
 - ML/MAP/Bayes under a probabilistic model
 - e.g.: Gaussian, identity covariance (same as Prototype)
 - e.g.: Gaussian, equal covariance (same as FLD)
 - e.g.: Gaussian, general case (Quadratic Discriminator)
- Some Examples:
 - Visual gender classification
 - Neural population decoding

Simplest linear discriminant: the Prototype Classifier

$$\hat{w} = \frac{\vec{\mu}_A - \vec{\mu}_B}{\|\vec{\mu}_A - \vec{\mu}_B\|}$$

- •200 face images (100 male, 100 female)
- •Adjusted for position, size, intensity/contrast
- •Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

Model validation/testing

- Cross-validation: Subject responses [% correct, reaction time, confidence] are explained
 - very well by SVM
 - moderately well by RVM / FLD
 - not so well by Prot
- Do these decision "models" make testable predictions? Synthesize optimally discriminable faces...

S.S. Stevens. "To Honor Fechner and Repeal His Law: A power function, not a log function, describes the operating characteristic of a sensory system" (1961)	expansive: $\mu(s) \propto s^{1.7}$ (g) $\sigma(s) \propto \mu(s)$ $\sigma(s) \propto 1/s$	
Three examples with different power-law mean response, each consistent with Weber's law discriminability.	o(s) & 1/s compressive: $\mu(s) \propto s^{0.3}$ $f(s) \propto \mu(s)$ stimulus, s [Zhou, Duong & EPS, 2022]	