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Statistical Decision Theory
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Signal Detection Theory
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Tumor, or not?
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Signal Detection Theory (binary estimation)

P(xIN) P(xS)

Measurement:

o
(noise)
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Decision: L
(signal)

For equal-shape, unimodal, symmetric distributions,
the ML decision rule is a threshold function.




More generally, decision rule can have multiple thresholds. ..
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Signal Detection Theory: Potential outcomes

Doctor responds Doctor responds

p(x|N) “no” “yes®
Tumor miss hit
present
Tumor correct false
absent reject alarm

For threshold ¢, cumulatives c()
c(t1S) = p(miss)

! X 1-c(t1S) = p(hit)
decision c(tIN) = p(correct reject)
threshold 1-c(tIN) = p(false alarm)

MAP decision rule?

MAP solution maximizes proportion of correct
answers, taking prior probability into account.
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Compared to ML threshold, the MAP threshold moves
away from higher-probability option.




Bayes decision rule?

Incorporate values for the four possible outcomes:

Payoff Matrix

Response

Yes No
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Bayes Optimal Criterion
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E(Yes|x) = V;’f_‘}'vp(S + N|x)+ VA);”"'p(le)
E(No|x) = V¥, p(S + N|x) + Vi°p(N | x)

Say yes if E(Yes | x) > E(No | x)

Optimal Criterion

E(Yes|x) = VI, p(S+ N|x) + Vi¥p(N|x)

+

E(No|x) = V(S + N|x) + Vi°p(N | x)

Say yes if E(Yes | x) > E(No | x)
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V(Correct|N)
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Posterior odds

Say yes if > =
p(N|x) Vies, — Vo, V(Correct|S + N)




Apply Bayes’ Rule

Posterior Likelihood Prior
DS+ N|X)= p(X|S +N)p(S +N)

p(x)

“~—— Nuisance normalizing term

p(x [ N)p(N)

, hence
p(x)

P(N|x)=

P(S+N|x) =[p(x|S+N>][p(S+N>]
PNTx) | p(xIN) U p(N)

Posterior odds / \

Likelihood ratio Prior odds

Optimal Criterion

” p(S+N|x) S V(Correct | N)
p(N|x) — V(Correct|S+N)

Say yes i

e if p(xIS+N) __p(N) _V(Correct|N) _ P

p(x|N) — p(S+N)V(Correct|S +N) B

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one:

Example applications of SDT

« Vision
* Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,
frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)
* Neurometric function/discrimination by neurons (internal
response = spike count)

From experimental measurements, assuming human is optimal,
can we determine the underlying distributions and criterion?
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Signal Detection Theory: discriminability (d')

High noise,
lots of overlap

Low noise,
not much overlap

Internal response: probability of occurrence curves

Probability

Internal response
, _ “separation”
“width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions

Error rate is a function of d’

Criterion
Criterion
Distribution of internal Distribution of internal
responses when no
responses when tumor
tumor
present
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Signal Detection Theory: Criterion

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

SDT: Gaussian case

zZlp(CR)]  zlp(H)]

Probability

0 c d x
d' = z[p(H)] + z[p(CR)] = z[p(H)] — z[p(FA)]
c= Z[p(CR)] G(x; , — 1 —(x-u)*/20°
(c=d’)> (x g O-) ‘/;O- ¢
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SDT: Psychometric function
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ROC (Receiver Operating Characteristic)

Criterion #1

DN

Probability

Interni] response

Plot anti-cumulatives:
1-c(tI N) vs. 1-¢(t1S)

as threshold ¢ varies

Hits

False Alarms

ROC (Receiver Operating Characteristic)

Criterion #2

2N

Probability

Internal response

Hits

False Alarms

ROC (Receiver Operating Characteristic)

Criterion #3
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Internal rgsponse
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False Alarms




ROC (Receiver Operating Characteristic)

Criterion #4

2N

Internal response

Probability
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False Alarms

ROC (Receiver Operating Characteristic)
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False-alarm rate
Area under the ROC

Area under curve = %correct in a 2AFC task]
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Slope of the ROC = likelihood ratio or posterior ratio if a
prior is used




Area under the ROC - Poisson case or with data:
Neurometric function and Choice probability
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Decision/classification in multiple dimensions

® Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean
® Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin

e Statistical:
o ML/MAP/Bayes under a probabilistic model
® c.g.: Gaussian, identity covariance (same as Prototype)
® c.g.: Gaussian, equal covariance (same as FLD)
® c.g.: Gaussian, general case (Quadratic Discriminator)

e Some Examples:
® Visual gender classification
® Neural population decoding

Linear Classifier

Find unit vector w (“discriminant™) that best separates the distributions
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Simplest linear discriminant: the Prototype Classifier

A —fip

W=
fia = fis]

Fisher Linear
Discriminant

Fisher

[ G, — i)’ .
max ——— (note: this is d’ squared!)
W [WTCyW + WTCpib ]

1
optimum: W = C~!(ii, — iiy), where C = E(CA + Cp)

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {w,b} s.t. c¢;(@w7 % —b) >m, Vi

X,




Reminder: Multi-D Gaussian densities
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(zﬂ)N|C| mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]

ML (or MAP) classifier for two Gaussians
Decision boundary is quadratic, with four possible geometries:
Class1 3, Class 1

B

Simplest case:
equal covariances
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[figure: Pagan et al. 2016]

A perceptual example: Gender identification

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
e[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]




Linear classifiers

SVM RVM Prot FLD

Four linear classifiers, trained on human data

Model validation/testing

® Cross-validation: Subject responses
[% correct, reaction time, confidence]
are explained

- very well by SVM
- moderately well by RVM / FLD
- not so well by Prot

® Do these decision “models”’make
testable predictions? Synthesize
optimally discriminable faces...

Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]
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Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, et. al; NIPS*04]

Fisher Information

* Second-order expansion of the (expected) negative log likelihood:

1(s) = —E {32 1o§§(r|s)}

* Provides a bound on “precision” of unbiased estimators: ;2 (s) > 1
(the “Cramér-Rao bound”) — I(s)
* Perceptually, provides a bound on discriminability: -
(Series et. al. 2009) D(s) < v1(s)
» Examples: with mean stimulus response M(S)
Gaussian case:  p(r|s) ~ N (u(s), 02) I(s) = [/ (s)]* /o

Poisson case:  p(r|s) ~ Poiss(u(s))  1(s) = [/ (s)]*/u(s)

Example: Weber’s law [Weber, 1834]
D 1 (discrimination thresholds
(s) o s proportional to stimulus strength)
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Assuming  I(s) o< — what internal representation can explain this? Many!
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additive Gaussian Poisson noise, multiplicative Gaussian
noise, with mean with mean noise, with mean
u(s) =log(s)+c u(s) = [log(s) + cJ? p(s) = as
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stimulus, s stimulus, s stimulus, s
entirely due to discrete representation, entirely due to
response mean depends on both mean response variance

[Fechner, 1860] and variance




S.S. Stevens. “To Honor
Fechner and Repeal His
Law: A power function, not
a log function, describes the
operating characteristic of a
sensory system” (1961)

Three examples with different
power-law mean response,
each consistent with Weber’s
law discriminability.
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[Zhou, Duong & EPS, 2022]




