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Section 6

Model fitting:

comparison, selection and regularization

40

20

-20

40

20

-20

40 40 40

20 20 20

-20 -20 -20

5
40 40 40
20 20 20
0 0 0
_20 -20 -20 5

0 5 10 0 5 10 0 5 10 0

How do we avoid overfitting (i.e., concluding that M=7 is “best”)?

Taxonomy of model-fitting errors

Unexplainable variability (e.g., due to noisy
measurements)

Overfitting (too many params, not enough data)
Optimization failures (e.g., local minima)

Model failures (what you’d really like to know)




Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
possibly non-unique
(local minima)
Quadratic
Iterative descent,

unique

Closed-form,
and unique

AN

Model Comparison

« If models are optimized according to some objective, it is
natural to compare them based on the value of that objective...

- for least squares regression, compare the residual squared
error of two models (with different regressors).

- for ML estimates, compute the likelihood (or log likelihood)
ratio, and compare to 1 (or zero).

- for MAP estimates, common to compute the posterior ratio

* Problem: evaluating the objective with the same data used to
optimize the model leads to over-fitting!

Bayesian Model Comparison

® Eg: Is the coin fair? Compared to what?

¢ Consider twomodels: M :p=0.5 M,:p=0.6

p(D|M,)P(M,)

M |D)=
p(M, | D)= E=

Compare their posterior ratio:

p(M,|D) _ p(D|M)P(M))
p(M,|D)  p(D|M,)P(M,)




Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters:
For an ML estimate: 6 = arg mein [— In p( 79)]
a. Akaike information criterion (AIC) [Akaike, 1974]
Eac(d, 6) = 2 dim(6) — 21n p(d]d)
b. Bayesian information criterion (BIC) [schwartz, 1978]

Egic(d, 0) = dim(d) In [dim(cf)} — 2Inp(d]f)
valid when dim(d) >> dim(d)

Option 2: Cross-validation
(evaluate generalization to held-out data)

Cross-validation

A resampling method for estimating predictive error of a model.
Widely used to identify/avoid over-fitting, and to provide a fair
comparison of models.
Using cross-validation to select the
degree of a polynomial model:

(1) Randomly partition data into 108
a “training” set, and a “test”
set.

—train error
—test error
—— true degree
true error

(2) Fit model to training set.
Measure error on test set.
(3) Repeat (many times).

(4) Choose model that 3
minimizes the average cross-
validated (“test”) error

0 5 10 15 20
polynomial degree

Ridge regression
(a.k.a. L> regularization)

Ordinary least squares regression:

OLS estimate

Ridge
estimate

argmin || — X 5||?
B
“Regularized” least squares regression:

7th-order polynomial regression:

srgmin 17— X B + Al|B| |2

5
* data
Equivalent formulation: MAP estimate, 4 7;%’;9@
assuming Gaussian likelihood & prior! 8
2
) T —1yT~ L S—
ﬁridge - (X X+)\I) X Yy 0 N
-1
Choose lambda by cross-validation: 2




Ridge Regression trades off bias and variance:
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[from http://www.stat.cmu.edu/~ryantibs/datamining/]

L; regularization

(a.k.a. “least absolute shrinkage and selection operator” - LASSO)

arg min |17 - 76]* + 3 fovs
B 1o
Assuming |72 =1, Brasso
solution is a “soft-threshold” .
on ﬁTf e"jridgc
MAP interpretation:
Gaussian noise, with
“Laplacian” prior
A2
Ridge regression vs. LASSO (2-dimensional) solutions
Ridge (L2) LASSO (Ly)
e \A=0
0 A =00 B B
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of regularizer



http://www.stat.cmu.edu/~ryantibs/datamining/

LASSO vs. ridge regression

Table 2.1 Crime data: Crime rate and five predictors, for N =50 U.S. cities.

city | funding hs not-hs college college4 crime rate
10 71 3 20 178
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 s 11 25 19 341
5 67 72 9 29 24 773
').U 66 (y‘T 'ZIh 18 16 940
Optimal weights: Optimal weights:
Ridge Regression Lasso
funding o] — unding
- | — Dbest (cross-
— validated)
” Bl o : e, lambda
hs “|’ ) ' hs
— A
[From Hastie, Tibshirani, Wainwright 2015]
(13 29
The “Relaxed LASSO
Solve for LASSO
2. Eliminate unused
regressors (those with .
zero coefficients) Py
3. Re-fit (using LS
regression) “relaxed LASSO” |
\
LASSO
b
Clustering

» K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)

* In general, alternate between:
1) Estimating cluster assignments (classification)
2) Estimating cluster parameters

* Coordinate descent: converges to (possibly local) minimum

* Need to choose K (number of clusters) - cross-validation!




K-Means clustering algorithm
Alternate between two steps:

1. Estimate cluster assignments: given class centers,
assign each point to closest one:

Voronoi regions:

2. Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-means example
N =300, and K =3

Initial centers Heration 1 Heration 2

Heration 3 Heration 9

[from R. Tibshirani, 2013]

K-means optimization failures

Initialization matters (due to local minima) ...
Three solutions obtained with different random starting points:

2 4 o . Ep o ER o .
8% Fo0 8% %50 §% Foo
g S0 by el 88 gt
1. o o s B0 | 7T o o T e | T % o ‘}éﬂ °$
8o 2w o 0% ‘Bﬁgﬂn Boo o o 0% %5‘;%0 B0 2 o 0% ‘\é’gi%b
. o @0 . o5 @ % s @0 @
w o o £ “ s o P “ w o Pap P °
24 Lo ‘?@m_ﬁ’ 2 24 L g‘gs;% .8 24 Lo 3“3’%% 2
oo, @ S0m 0 0 ® o o0, o 0 ° g ® o oo, @ 80w © 7 ® o
o 1o %00 w502 | o loBEee ot | aloBiiee o ge s
ER B B BN AL POt <o 357 &P
woaos® w0 ©°0 % > s I AT o
§ T T T § : T T ;g T T T
00 05 10 15 00 0s 10 1s 00 os 10 1s

[from R. Tibshirani, 2013]




K-means systematic failures

Non-convex/non-round-shaped clusters
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Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

ML for discrete mixture of Gaussians: soft K-means

Pl i Ar) ox 3 e (oA /2

—
Y% |Ak‘|
Ak = assignment probability
{fk, Ak} =mean/covariance of class k

Intuition: alternate between maximizing these two sets of variables
(“coordinate descent”)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
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[wikipedia]




Application to neural “spike sorting”

Standard solution:

1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Failures of clustering for near-synchronous spikes

synchronous spiking
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[Pillow et. al. 2013]




