Review of Linear Shift-invariant Systems Theory

The following is a (very) brief review of linear systems theory, convolution, and Fourier anal-
ysis. I work primarily with discrete signals, but each result developed in this review has a
parallel in terms of continuous signals and systems. I assume the reader is familiar with lin-
ear algebra (as reviewed in the handout Geometric Review of Linear Algebra), and least squares
estimation (as reviewed in the handout Least Squares Optimization).

1 Linear shift-invariant systems

A system is linear if (and only if) it obeys the principle of superposition: the response to a
weighted sum of any two inputs is the (same) weighted sum of the responses to each individ-
ual input.

A system is shift-invariant (also called translation-invariant for spatial signals, or time-invariant
for temporal signals) if the response to any input shifted by any amount A is equal to the re-
sponse to the original input shifted by amount A.

These two properties are completely independent: a system can have one of them, both or
neither [think of an example of each of the 4 possibilities].

The rest of this review is focused on systems that are both linear and shift-invariant (known as
LSI systems). The diagram below decomposes the behavior of such an LSI system. Consider
an arbitrary discrete input signal. We can rewrite it as a weighted sum of impulses (also called
“delta functions”). Since the system is linear, the response to this weighted sum is just the
weighed sum of responses to each individual impulse. Since the system is shift-invariant, the
response to each impulse is just a shifted copy of the response to the first one. The response to
the impulse located at the origin (position 0) is known as the system’s impulse response.

Putting it all together, the full system response is the weighted sum of shifted copies of the
impulse response. Note that the system is fully characterized by the impulse response: This is
all we need to know in order to compute the response of the system to any input!

To make this explicit, we write an equation that describes this computation:

yln] = 3 x[mlrin —m]
m
This operation, by which input 2 and impulse response r are combined to generate output
signal y is called a convolution. It is often written using a more compact notation: y = x * .
Although we think of x and r playing very different roles, the operation of convolution is
actually commutative: substituting k = n — m gives:

yln] =Y _xln — kJr[k]

k

e Author: Eero Simoncelli, Center for Neural Science, and Courant Institute of Mathematical Sciences, New York
University.

¢ Thanks to Jonathan Pillow for generating some of the figures.

e Created: Fall 2001. Last revised: October 23, 2022.

¢ Send corrections or comments to eero.simoncelli@nyu.edu

I nput
v ‘\‘\
]
le‘ Vi X \‘\m
* V2 x ‘ +V2 X \‘\m
—» L »
T Y3 X ‘ T V3 x \‘\m
+ V4 x ‘ + Vg X \“\\
Qut put
L

which is just r * z. It is also easy to see that convolution is associative: a * (b * c) = (a * b) * c.

And finally, convolution is distributive over addition: a * (b+c¢) =axb+a=xc.

In

Back to LSI systems. The impulse response n
r is also known as a “convolution kernel” or
“linear filter”. Looking back at the definition,
each component of the output y is computed
as an inner product of a chunk of the input
vector x with a reverse-ordered copy of r. As
such, the convolution operation may be visu-
alized as a weighted sum over a window that
slides along the input signal. Out) | | |

26

-—(+

For finite-length discrete signals (i.e., vectors),
one must specify how convolution is handled
at the boundaries (altenatively, one must de-
fine “shift-invariance” so as to explain what | CGdnvol uti on
happens to samples that are “shifted” to lo- NAtTi X
cations beyond the last element of the vec-
tor). One solution is to consider each vector
to cover one period of an infinitely periodic
signal. Thus, for example, when the convo- | \wr apar ound —
lution operation would require one to access N

an element just beyond the last element of the
vector, one need only “wrap around” and use
the first element. This is referred to as circu-
lar or periodic boundary handling. There are
other methods of handling boundaries. For
example, one can pad the signal with zeros
(implicitly assumed in Matlab), or reflect or ex-
trapolate it about the boundary elements.

The convolution operation may be naturally generalized to multidimensional signals. For
example, in 2D, both the signal and convolution kernal are two-dimensional arrays of numbers
(eg., digital images), and the operation corresponds to taking sums over a 2D window of the
signal, with weights specified by the kernel.

2 Sinusoids and Convolution

The sine function, sin(f), gives the y-coordinate of the points on a unit circle, as a function of
the angle 6. The cosine function cos(6), gives the z-coordinate. Thus, sin?(#) +cos?(¢) = 1. The
angle, 0, is (by convention) assumed to be in units of radians, and counter-clockwise relative to
the horizontal axis. A full sweep around the unit circle corresponds to an angle of 27 radians.

Now we consider sinusoidal signals. A discretized sinusoid can be written as: z[n] =
Acos(wn — ¢). Here, n is an integer position within the signal, w is the frequency of oscil-
lations (in radians per sample), and ¢ is the phase (in radians).

These sinusoidal functions have a unique behavior with respect to LSI systems. Consider
input signal z[n] = cos(wn). The response of an LSI system with impuse response r[n] is:

ylnl = > rlkleln — K]
k
= > rlk]cos(w(n —k))
k
= > r[k][cos(wn) cos(wk) + sin(wn) sin(wk)]
k

Z (k] sin(wk)] sin(wn)

k

— [Z rlk] cos(wk)] cos(wn) +

k

where the third line is achieved using the trigonometric identity cos(a — b) = cos(a) cos(b) +
sin(a) sin(b). The two sums (in brackets) are just inner products of the impulse response with
the cosine and sine functions at frequency w, and we denote them as ¢, (w) = Y, r[k] cos(wk)
and s, (w) = >_j, r[k] sin(wk). If we consider these two values as coordinates of a two-dimensional
vector, we can rewrite them in polar coordinates by defining vector length (amplitude) A, (w) =
Ver(W)? + s.(w)? and vector angle ¢, (w) = tan™!(s,(w)/c,(w)). Substituting back into our ex-
pressmn for the LSI response gives:

yln] = ¢ (w)cos(wn)+ sp(w)sin(wn)
= A, (w)cos(¢p(w))cos(wn) + Ay (w) sin(¢, (w)) sin(wn)
= A,(w)[eos(wn) cos(dy () + sin(wn) sin(@r ()]
= A(w)cos(wn — dr(w))

where the last line is achieved by using the same trigonometric identity as before (but in the
opposite direction). Thus: The response of an LSI system to a sinusoidal input signal is a si-
nusoid of the same frequency, but (possibly) different amplitude and phase. The amplitude
is multiplied by A, (w), and the phase is shifted by ¢, (w), both of which are derived from the
system impulse response r[n]. This is true of all LSI systems, and all sinusoidal signals.

Sinusoids as eigenfunctions of LSI systems. The relationship between LSI systems and si-
nusoidal functions may be expressed more compactly (and completely) by bundling together
a sine and cosine function into a single complex exponential:

¥ = cos(0) + isin()

4

where i = /=1 is the imaginary number. This rather mysterious relationship (known as
Euler’s Formula) can be derived by expanding the exponential in a Taylor series, and noting
that the even (real) terms form the series expansion of a cosine and the odd (imaginary) terms
form the expansion of a sine.

The use of complex numbers may seem unnecessarily abstract. But it allows changes in the
amplitude and phase of a sinusoid, and thus the responses of an LSI system to a sinusoid, to be
expressed more compactly. Consider input signal z[n] = ¢*“". The response of an LSI system
with impuse response r[n] is now:

yln] = A, (w)cos(wn — ¢T()) + 1A, (w)sin (wn — ¢, (w))
= Ay (w)ellon—erl
_ Ar(w) —zd)r(w) iwn
= A)e el

The action of an LSI system on the complex exponential function is to multiply it by a single
complex number, A,(w)e (). That is, the complex exponentials are eigenfunctions of LSI
systems!

3 Fourier Transform(s)

A collection of sinusoids may be used as a linear basis for representing signals. The transfor-
mation from the standard representation of the signal (eg, as a function of time) to a set of
coefficients representing the amount of each sinusoid needed to create the signal is called the
Fourier Transform (F.T.).

There are really four variants of Fourier transform, depending on whether the signal is contin-
uous or discrete, and on whether its E.T. is continuous or discrete:

Signal Transform continuous discrete
continuous Fourier Transform | Discrete-Time(Space) Fourier Transform
discrete Fourier Series Discrete Fourier Transform

In addition, when a signal /E.T. is discrete, the F.T./signal is periodic.

For our purposes here, we’ll construct the Discrete Fourier Transform (DFT), which is both
periodic and discrete, in both the signal and transform domains. Consider the input domain
to be vectors of length IV, which represent one period of a periodic discrete input signal. We
can construct a set of IV sinusoidal vectors that are orthogonal to each other [verify]:

27k N
= — k=0,1,... —
ck[n] = cos (N n) , 0,1, 5

2wk

sk[n] = sin (Tn>, k=1,2,...

N
S
2

A few comments about this set:

* The vectors above have a squared norm of N/2 (N for k = 0), so dividing them by /N/2
(/N for k = 0) would make them unit vectors. The matrix F formed with these normal-
ized vectors as columns would be orthogonal, with an inverse equal to its transpose. But
many definitions/implementations of the DFT choose to normalize the vectors differ-
ently. For example, in matlab, the fft function does not include any normalization factor,
but the inverse (ifft) function then normalizes by 2/N (1/N for k = 0).

* these vectors come in sine/cosine pairs for each frequency except for the first and last
frequencies (k = 0, and k& = N/2), for which the sine vector would be zero). If N is odd,
the vector at frequency k£ = IN/2 is omitted.

* Notice that if we included vectors for additional values of &, they would be redundant. In
particular, the vectors associated with any particular k are the same as those for £ +mN
for any integer m. That is, the DFT, indexed by k, is periodic with period N. Moreover,
the vectors associated with —k are the same as those associated with £, except that all of
the the sine functions are negated (sine is an anti-symmetric function).

Since this set of N sinusoidal vectors are orthogonal to each other, they span the full input
space, and we can write any vector ¥ as a weighted sum of them:

N/2 N/2—1

v[n] = Z agcg[n] + Z br.sk[n]
k=0 k=1

Since the basis is orthogonal, the Fourier coefficients {ax, b; } may be computed by projecting
the input vector ¢ onto each basis function:

N-—1

ap = Zv[n]ck[n]
n=0
N-1

b, = Zv[n]sk[n]
n=0

In matrix form, we can write ¥ = F(F¥) (assuming normalization as described in the first
bullet above).

Now, using the properties of sinusoids developed earlier, we can combine cosine and sine
terms into a single phase-shifted sinusoid:

N/2

2rk
v[n] = E Agsin (| —n — ¢
= <N ’“>

with amplitudes Ay = (/a2 + b2, and phases ¢y = tan™!(by/ay). These are are referred to as
the Fourier amplitudes (or magnitudes) and Fourier phases of the signal v[n|. Again, this is

just a polar coordinate representation of the original values {ay, by }.

il

0) Original signal

At the right is an illustration of successive

approximations of a triangle wave with si-
nusoids. The top panel shows the original
signal. The next shows the approximation

3 frequencies One frequency (k

o@?TTT TTT%@@?TTT TTT%

one gets by projecting onto a single zero-
frequency sinusoid (i.e., the constant func-

tion). The next shows the result with three fre-
quency components, and the last panel shows
the result with six. [Try matlab’s xfourier

0} 0} 0} 0}

6 frequencies

to see a live demo with square wave.]

QQ?TTT | TTTTS@@@?EOTT

5 10

It

25

o

The standard representation of the Fourier coefficients uses a complex-valued number to rep-
resent the amplitude and phase of each frequency component, A;e'®s. The Fourier amplitudes

and phases correspond to the amplitude and phase of this complex number.

i npul se
P P const ant

0

-
Fourier amplitude spectra (the amplitudes
plotted as a function of frequency number k)
for These are shown here symmetrically ar- \ -—
ranged around frequency £ = 0, but some
authors plot only the positive half of the fre-
quency axis. Note that the cosine function is
constructed by adding a complex exponential

to its frequency-negated cousin - this is why

0
Shown in the left column are three simple
signals: an impulse, a Gaussian, and a co-
sine function. In the right column are their 0

(I) \/

the Fourier transform shows two impulses.

Stretch (dilation) property. If we stretch the input signal (i.e., rescale the x-axis by a factor
«), the Fourier transform will be compressed by the same factor (i.e., rescale the frequency
axis by 1/alpha). Consider a Gaussian signal. The Fourier amplitude is also a Gaussian, with
standard deviation inversely proportional to that of the original signal.

Shift property. When we shift an input signal, each sinusoid in the Fourier representation
must be shifted. Specifically, shifting by m samples means that the phase of each sinusoid
changes by 2t£m, while the amplitude is unchanged. Note that the phase change is different

for each frequency k.

4 Convolution Theorem

The most important property of the Fourier representation is its relationship to LSI systems
and convolution. To see this, we need to combine the eigenvector property of complex expo-
nentials with the Fourier transform. The diagram below illustrates this. Consider applying an
LSI system to an arbitrary signal. Use the Fourier transform to rewrite it as a weighted sum
of sinusoids. The weights in the sum may be expressed as complex numbers, A;e!?*, repre-
senting the amplitude and phase of each sinusoidal component. Since the system is linear, the
response to this weighted sum is just the weighted sum of responses to each of the individual
sinusoids. But the action of an LSI on a sinusoid with frequency number £ will be to multiply

V1x A (ne'?® v, x
—LS |»

Y T AA +A (2 vzv/\\//\\/

AW N A AAWA
V3 Y A@ME Vg Y

Qut put A
A Vo

the amplitude by a factor A, (k) and shift the phase by an amount ¢, (k). Finally, the system
response is a sum of sinusoids with amplitudes/phases corresponding to

(Ar(k:)Ak)ei(¢T(k)+¢k) — (Ar(k)ei‘f’r(k))(Akei%),

Earlier, using a similar sort of diagram, we explained that LSI systems can be characterized
by their impulse response, r[n]. Now we have seen that the complex numbers A, (k)e'®"(*)
provide an alternative characterization. We now want to find the relationship between these
two characterizations. First, we write an expression for the convolution (response of the LSI
system):

Now take the DFT of both sides of the equation:
Y[k] — Z y[n] €i27rnk/N

= Z Z r[m]xz[n — m]eﬂmkﬂv
= > rim]) zn-— m)et2m kN

_ Z r[m]eﬂﬂmk/NX[k,]

— RIKX[k]

This is quite amazing: the DFT of the LSI system response, y[n], is just the product of the DFT
of the input and the DFT of the impulse response! That is, the complex numbers A, (k)e'®r(*)
correspond to the Fourier transform of the function r[n].

Summarizing, the response of the LSI system
may be computed by a) Fourier-transforming
the input signal, b) multiplying each Fourier
coefficient by the associated Fourier coeffi-
cient of the impulse response, and c) In-
verse Fourier-transforming. A more collo-
quial statement of this Convolution theorem
is: “convolution in the signal domain corre-
sponds to multiplication in the Fourier do-
main”. Reversing the roles of the two do-
mains (since the inverse transformation is es-
sentially the same as the forward transforma-
tion) means that “multiplication in the sig-
nal domain corresponds to convolution in the
Fourier domain”.

| nput

LS — Qut put
(FT)-L
T VxT

Why would we want to bother going through three sequential operations in order to compute
a convolution? Conceptually, multiplication is easier to understand than convolution, and
thus we can often gain a better understanding of an LSI by thinking about it in terms of its
effect in the Fourier domain. More practically, there are very efficient algorithms for the Dis-
crete Fourier Transform, known as the Fast Fourier Transform (DFT), such that this three-step

10

computation may be more computationally efficient than direct convolution.

As an example of conceptual simplification,
consider two impulse responses, along with
their Fourier amplitude spectra. It is often dif-
ficult to anticipate the behavior of these sys-
tems solely from their impulse responses. But
their Fourier transforms are quite revealing.
The first is alowpass filter meaning that it dis-
cards high frequency sinusoidal components
(by multiplying them by zero). The second is
a bandpass filter - it allows a central band of
frequencies to pass, discarding the lower and
higher frequency components.

As another example of conceptual simplifica-
tion, consider an impulse response formed by
the product of a Gaussian function, and a si-
nusoid (known as a Gabor function). How
can we visualize the Fourier transform of this
product? We need only compute the convolu-
tion of the Fourier transforms of the Gaussian
and the sinusoid. The Fourier transform of
a Gaussian is a Gaussian. The Fourier trans-
form of a sinusoid is an impulse at the corre-
sponding frequency. Thus, the Fourier trans-
form of the Gabor function is a Gaussian cen-
tered at the frequency of the sinusoid.

Lowpass
Rlte

P

V |V

Bandpass
Rlter

A\ AN

VIV

Fouri er
Spect rum

o

Fouri er
Spect rum

AN
TAVATRY

A\

At

11

