Mathematical Tools for Neural and Cognitive Science	
Fall semester, 2024	
Section 1: Linear Algebra	

Linear Algebra	
"Linear algebra has become as basic and	
as applicable as calculus, and fortunately it is easier"	
- Gilbert Strang, Linear Algebra and its Applications	
and this is even more true today than	
when the book was published!	

Vector operations	
• scalar multiplication	
• addition, vector spaces	
• length (norm), unit vectors	
• inner product (a.k.a. "dot" product)	
- definition/notation: sum of pairwise products	
 geometry: cosines, squared length, orthogonality test 	
[on board: geometry]	
[on ooura, geomen y]	
Inner product with a unit vector	
· · ·	
• projection onto line	
• distance to line/plane	
• change of coordinates	
[on board: geometry]	
XX	
Vectors as "operators"	
 "averager" "windowed averager"	
 "smooth averager"	
"local differencer"	
• "component selector"	
[on board]	

Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
- conceptualize fundamental issues
- provide baseline performance
- building blocks for more complex models

Implications of Linearity	
$\vec{v} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} \xrightarrow{I} I$	

Matrix multiplication • two interpretations of $M\vec{v}$: - weighted sum of columns - inner products with rows	
• transpose: A^T , symmetric matrices $(A = A^T)$	
• distributive property (directly from linearity)	
• associative property: cascade of two linear systems is linear. Defines matrix multiplication.	
[details on board]	

Matrix multiplication

- two interpretations of $M\vec{v}$:
 - "input perspective": weighted sum of columns
- "output perspective": inner product with rows
- transpose A^T , symmetric matrices $(A = A^T)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.
- generally *not* commutative $(AB \neq BA)$, but note that $(AB)^T = B^T A^T$
- vectors as matrices. Inner products vs outer products

[details on board]

