
Least Squares Optimization

The following is a brief review of least squares optimization and constrained optimization
techniques, which are widely used to analyze and visualize data. Least squares (LS) optimiza-
tion problems are those in which the objective (error) function is a quadratic function of the
parameter(s) being optimized. The solutions to such problems may be computed analytically
using the tools of linear algebra, have a natural and intuitive interpretation in terms of dis-
tances in Euclidean geometry, and also have a statistical interpretation (which is not covered
here).

We assume the reader is familiar with basic linear algebra, including the Singular Value de-
composition (as reviewed in the handout Geometric Review of Linear Algebra,
http://www.cns.nyu.edu/∼eero/NOTES/geomLinAlg.pdf ).

1 Regression

Least Squares regression is a form of optimization problem. Suppose you have a set of mea-
surements, yn (the “dependent” variable) gathered for different known parameter values, xn
(the “independent” or “explanatory” variable). Suppose we believe the measurements are pro-
portional to the parameter values, but are corrupted by some (random) measurement errors,
εn:

yn = pxn + εn

for some unknown slope p. The LS regression problem aims to find the value of p minimizing
the sum of squared errors:

min
p

N∑

n=1

(yn − pxn)
2

Stated graphically, If we plot the measure-
ments as a function of the explanatory vari-
able values, we are seeking the slope of the
line through the origin that best fits the mea-
surements.

y

x

We can rewrite the error expression in vector form by collecting the yn’s and xn’s into column
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vectors (�y and �x, respectively):
min
p

||�y − p�x||2

or, expressing the squared vector length as an inner product:

min
p

(�y − p�x)T (�y − p�x)

We’ll consider three different ways of obtaining the solution. The traditional approach is to
use calculus. If we set the derivative of the error expression with respect to p equal to zero and
solve for p, we obtain an optimal value of

popt =
�yT�x

�xT�x
.

We can verify that this is a minimum (and not a maximum or saddle point) by noting that the
error is a quadratic function of p, and that the coefficient of the squared term must be positive
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since it is equal to a sum of squared values [verify].

A second method of obtaining the solution
comes from considering the geometry of the
problem in the N -dimensional space of the
data vector. We seek a scale factor, p, such
that the scaled vector p�x is as close as possi-
ble to �y. From basic linear algebra, we know
that the closest scaled vector should be the
projection of �y onto the line in the direction
of �x (as seen in the figure). Defining the unit
vector x̂ = �x/||�x||, we can express this as:

popt�x = (�yT x̂)x̂ =
�yT�x

||�x||2 �x

which yields the same solution that we ob-
tained using calculus [verify].

y

x
p x

A third method of obtaining the solu-
tion comes from the so-called orthogonality
principle. We seek a scaled version �x that
comes closest to �y. Considering the geome-
try, we can easily see that the optimal choice
is vector that lies along the line defined by
�x, for which the error vector �y − popt�x is per-
pendicular to �x. We can express this directly
using linear algebra as:

�xT (�y − popt�x) = 0.

Solving for popt gives the same result as
above.

y

x

px-y
error

Generalization: Multiple explanatory variables

Often we want to fit data with more than one explanatory variable. For example, suppose we
believe our data are proportional to a set of known xn’s plus a constant (i.e., we want to fit the
data with a line that does not go through the origin). Or we believe the data are best fit by a
third-order polynomial (i.e., a sum of powers of the xn’s, with exponents ranging from 0 to 3).
These situations may also be handled using LS regression as long as (a) the thing we are fitting
to the data is a weighted sum of known explanatory variables, and (b) the error is expressed as
a sum of squared errors.

Suppose, as in the previous section, we have an N -dimensional data vector, �y. Suppose there
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are M explanatory variables, and the mth variable is defined by a vector, �xm, whose elements
are the values meant to explain each corresponding element of the data vector. We are looking
for weights, pm, so that the weighted sum of the explanatory variables approximates the data.
That is,

∑
m pm�xm should be close to �y. We can express the squared error as:

min
{pm}

||�y −
∑

m

pm�xm||2

If we form a matrix X whose columns contain the explanatory vectors, we can write this error
more compactly as

min
�p

||�y −X�p ||2

For example, if we wanted to include an additive constant (an intercept) in the simple least
squares problem shown in the previous section, X would contain a column with the original
explanatory variables (xn) and another column containing all ones.

The vector X�p is a weighted sum of the
explanatory variables, which means it lies
somewhere in the subspace spanned by the
columns of X. This gives us a geometric in-
terpretation of the regression problem: we
seek the vector in that subspace that is as
close as possible to the data vector �y. This
is illustrated to the right for the case of two
explanatory variables (2 columns of X).

�y

�x1

�x2
X�βopt

As before there are three ways to obtain the solution: using (vector) calculus, using the ge-
ometry of projection, or using the orthogonality principle. The orthogonality method is the
simplest to understand. The error vector should be perpendicular to the subspace spanned by
the explanatory vectors, which is equivalent to saying it must be perpendicular to each of the
explanatory vectors. This may be expressed directly in terms of the matrix X:

XT · (�y −X�p ) = �0

Solving for �p gives:
�popt = (XTX)−1XT �y

Note that we’ve assumed that the square matrix XTX is invertible.

This solution is a bit hard to understand in general, but some intuition comes from considering
the case where the columns of the explanatory matrix X are orthogonal to each other. In this
case, the matrix XTX will be diagonal, and the mth diagonal element will be the squared
norm of the corresponding explanatory vector, ||�xm||2. The inverse of this matrix will also
be diagonal, with diagonal elements 1/||�xm||2. The product of this inverse matrix with XT is
thus a matrix whose rows contain the original explanatory variables, each divided by its own
squared norm. And finally, each element of the solution, �popt, is the inner product of the data
vector with the corresponding explanatory variable, divided by its squared norm. Note that
this is exactly the same as the solution we obtained for the single-variable problem described
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above: each �xm is rescaled to explain the part of �y that lies along its own direction, and the
solution for each explanatory variable is not affected by the others.

In the more general situation that the columns of X are not orthogonal, the solution is best un-
derstood by rewriting the explanatory matrix using the singular value decomposition (SVD),
X = USV T , (where U and V are orthogonal, and S is diagonal). The optimization problem is
now written as

min
�p

||�y − USV T �p ||2

We can express the error vector in a more useful coordinate system by multipying it by the
matrix UT (note that this matrix is orthogonal and won’t change the vector length, and thus
will not change the value of the error function):

||�y − USV T �p ||2 = ||UT (�y − USV T �p )||2 = ||UT �y − SV T �p ||2

where we’ve used the fact that UT is the inverse of U (since U is orthogonal).

Now we can define a modified version of the data vector, �y ∗ = UT �y, and a modified version
of the parameter vector �p ∗ = V T �p . Since this new parameter vector is related to the original
by an orthogonal transformation, we can rewrite our error function and solve the modified
problem:

min
�p ∗ ||�y ∗ − S�p ∗||2

Why is this easier? The matrix S is diagonal, and has M columns. So the mth element of the
vector S�p ∗ is of the form Smmp∗m, for the first M elements. The remaining N − M elements
are zero. The total error is the sum of squared differences between the elements of �y and the
elements of S�p ∗, which we can write out as

E(�p ∗) = ||�y ∗ − S�p ∗||2

=
M∑

m=1

(y∗m − Smmp∗m)2 +
N∑

m=M+1

(y∗m)2

Each term of the first sum can be set to zero (its minimum value) by choosing p∗m = ym/Smm.
But the terms in the second sum are unaffected by the choice of �p ∗, and thus cannot be elimi-
nated. That is, the sum of the squared values of the last N −M elements of �y ∗ is equal to the
minimal value of the error.

We can write the solution in matrix form as

�p ∗
opt = S#�y ∗

where S# is a diagonal matrix whose mth diagonal element is 1/Smm. Note that S# has to
have the same shape as ST for the equation to make sense. Finally, we must transform our
solution back to the original parameter space:

�popt = V �p ∗
opt = V S#�y ∗ = V S#UT�y

You should be able to verify that this is equivalent to the solution we obtained using the or-
thogonality principle – (XTX)−1XT �y – by substituting the SVD into the expression.
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Generalization: Weighting

Sometimes, the data come with additional information about which points are more reliable.
For example, different data points may correspond to averages of different numbers of experi-
mental trials. The regression formulation is easily augmented to include weighting of the data
points. Form an N ×N diagonal matrix W with the appropriate error weights in the diagonal
entries. Then the problem becomes:

min
�p

||W (�y −X�p )||2

and, using the same methods as described above, the solution is

�popt = (XTW TWX)−1XTW TW �y

Generalization: Robustness

A common problem with LS regression is
non-robustness to outliers. In particular, if
you have one extremely bad data point, it
will have a strong influence on the solution.
A simple remedy is to iteratively discard the
worst-fitting data point, and re-compute the
LS fit to the remaining data. [note: this can
be implemented using a weighting matrix,
as above, with zero entries for the deleted
outliers]. This can be done iteratively, until
the error stabilizes.

outlier

Alternatively one can consider the use of a
so-called “robust error metric” d(·) in place
of the squared error:

min
�p

∑

n

d(yn −Xn�p ).

For example, a common choice is the
“Lorentzian” function:

d(en) = log(1 + (en/σ)
2),

plotted at the right along with the squared
error function. The two functions are similar
for small errors, but the robust metric assigns
a smaller penalty to large errors.
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Use of such a function will, in general, mean that we can no longer get an analytic solution
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to the problem. In most cases, we’ll have to use an iterative numerical algorithm (e.g., gradi-
ent descent) to search the parameter space for a minimum, and we may get stuck in a local
minimum.

2 Constrained Least Squares

Consider the least squares problem from above, but now imagine we also want to constrain the
solution vector using a linear constraint: �c T �p = 1. For example, we might want the solution
vector to correspond to a weighted average (i.e., its elements sum to one), for which we’d use
a constraint vector �c filled with ones. The optimization problem is now written as:

min
�p

||�y −X�p ||2, such that �c T �p = 1.

To solve, we again replace the regressor matrix with its SVD, X = USV T , and then eliminate
the orthogonal matrices U and V from the problem by re-parameterizing:

min
�p

||�y ∗ − S�p ∗||2, s.t. �c ∗T �p ∗ = 1,

where �y ∗ = UT�y, �p ∗ = V T �p , and �c ∗ = V T�c [verify that �c ∗T �p ∗ = �c T �p ]. Finally, we rewrite the
problem as:

min
�p ∗∗ ||�y ∗∗ − �p ∗∗||2, s.t. �c ∗∗T �p ∗∗ = 1,

where �y ∗∗ is the top k elements of �y ∗ (with k
the number of regressors, or columns of X),
�p ∗∗ = S∗�p ∗, �c ∗∗ = S#�c ∗, S∗ is the square ma-
trix containing the top k rows of S, and S# is
its inverse [verify that �c ∗∗T �p ∗∗ = �c ∗T �p ∗].

The transformed problem is easy to visualize
in two dimensions: we want the vector �p ∗∗

that lies on the line defined by �c ∗∗T �p ∗∗ = 1,
and is closest to �y ∗∗. The solution is the pro-
jection of vector �y ∗∗ onto the hyperplane per-
pendicular to �c ∗∗ (red point in figure), so we
can write �p ∗∗

opt = �y ∗∗ − α�c ∗∗ and solve for a
value of α that satisfies the constraint:

�c ∗∗T (�y ∗∗ − α�c ∗∗) = 1.

c

y

cTp = 1

p1

p2

The solution is αopt = (�c ∗∗T �y ∗∗−1)/(�c ∗∗T�c ∗∗), and transforming back to the original parameter
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space gives:
�popt = V S#�p ∗∗

opt = V S# (�y ∗∗ − αopt�c
∗∗)

3 Total Least Squares (Orthogonal) Regression

In classical least-squares regression, as described in section 1, errors are defined as the squared
distance between the data (dependent variable) values and a weighted combination of the in-
dependent variables. Sometimes, each measurement is a vector of values, and the goal is to
fit a line (or other surface) to a “cloud” of such data points. That is, we are seeking structure
within the measured data, rather than an optimal mapping from independent variables to the
measured data. In this case, there is no clear distinction between “dependent” and “inde-
pendent” variables, and it makes more sense to measure errors as the squared perpendicular
distance to the line.

Suppose one wants to fit N -dimensional
data with a subspace of dimensionality N−1.
That is: in 2D we are looking to fit the data
with a line, in 3D a plane, and in higher di-
mensions an N − 1 dimensional hyperplane.
We can express the sum of squared distances
of the data to this N − 1 dimensional space
as the sum of squared projections onto a unit
vector û that is perpendicular to the space.
Thus, the optimization problem may thus be
expressed as:

min
�u

||M�u||2, s.t. ||�u||2 = 1,

where M is a matrix containing the data vec-
tors in its rows.

Performing a Singular Value Decomposition (SVD) on the matrix M allows us to find the
solution more easily. In particular, let M = USV T , with U and V orthogonal, and S diagonal
with positive decreasing elements. Then

||M�u||2 = �uTMTM�u

= �uTV STUTUSV T�u

= �uTV STSV T�u,

Since V is an orthogonal matrix, we can modify the minimization problem by substituting the
vector �v = V T�u, which has the same length as �u:

min
�v

�vTSTS�v, s.t. ||�v|| = 1.

The matrix STS is square and diagonal, with diagonal entries s2n. Because of this, the expres-
sion being minimized is a weighted sum of the components of �v which must be greater than
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the square of the smallest (last) singular value, sN :

�vTSTS�v =
∑

n

s2nv
2
n

≥
∑

n

s2Nv2n

= s2N
∑

n

v2n

= s2N ||�v||2
= s2N .

where we have used the constraint that �v is a unit vector in the last step. Furthermore, the
expression becomes an equality when �vopt = êN = [0 0 · · · 0 1]T , the unit vector associated
with the N th axis [verify].

We can transform this solution back to the original coordinate system to get a solution for �u:

�uopt = V �vopt

= V êN

= �vN ,

which is the N th column of the matrix V . In summary, the minimum value of the expression
occurs when we set �v equal to the column of V associated with the minimal singular value.

Suppose we wanted to fit the data with a line/plane/hyperplane of dimension N − 2? We
could first find the direction along which the data vary least, project the data into the remain-
ing (N − 1)-dimensional space, and then repeat the process. But because V is an orthogonal
matrix, the secondary solution will be the second-to-last column of V (i.e., the column asso-
ciated with the second-smallest singular value). In general, the columns of V provide a basis
for the data space, in which the axes are ordered according to the sum of squares along each
of their directions. We can solve for a vector subspace of any desired dimensionality that best
fits the data (see next section).

The total least squares problem may also be formulated as a pure (unconstrained) optimization
problem using a form known as the Rayleigh Quotient:

min
�u

||M�u||2
||�u||2 .

The length of the vector �u doesn’t change the value of the fraction, but by convention, one
typically solves for a unit vector. As above, this fraction takes on values in the range [s2N , s21],
and is equal to the minimum value when �u is set equal to the last column of the matrix V .

Relationship to Eigenvector Analysis

The Total Least Squares and Principal Components problems are often stated in terms of eigen-
vectors. The eigenvectors of a square matrix, A, are a set of vectors that the matrix re-scales:

A�v = λ�v.

9



The scalar λ is known as the eigenvalue associated with �v. Any symmetric real matrix can be
factorized as:

A = V ΛV T ,

where V is a matrix whose columns are a set of orthonormal eigenvectors of A, and Λ is a
diagonal matrix containing the associated eigenvalues. This looks similar in form to the SVD,
but it is not as general: A must be square and symmetric, and the first and last orthogonal
matrices are transposes of each other.

The problems we’ve been considering can be restated in terms of eigenvectors by noting a
simple relationship between the SVD of M and the eigenvector decomposition of MTM . The
total least squares problems all involve minimizing expressions

||M�v||2 = �vTMTM�v

Substituting the SVD (M = USV T ) gives:

�vTV STUTUSV T�v = �v(V STSV T�v)

Consider the parenthesized expression. When �v = �vn, the nth column of V , this becomes

MTM �vn = (V STSV T ) �vn = V s2n�en = s2n�vn,

where �en is the nth standard basis vector. That is, the �vn are eigenvectors of (MTM), with
associated eigenvalues λn = s2n. Thus, we can either solve total least squares problems by
seeking the eigenvectors and eigenvalues of the symmetric matrix MTM , or through the SVD
of the data matrix M .

4 Fisher’s Linear Discriminant

Suppose we have two sets of data gathered under different conditions, and we want to identify
the characteristics that differentiate these two sets. More generally, we want to find a classifier
function, that takes a point in the data space and computes a binary value indicating the set
to which that point most likely belongs. The most basic form of classifier is a linear classifier,
that operates by projecting the data onto a line and then making the binary classification deci-
sion by comparing the projected value to a threshold. This problem may be expressed as a LS
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optimization problem (the formulation is due to Fisher (1936)).

We seek a vector �u such that the projection of
the data sets maximizes the discriminability
of the two sets. Intuitively, we’d like to find
a direction along which the two sets overlap
the least. Thus, an appropriate expression to
maximize is the ratio of the squared distance
between the means of the two sets and the
sum (or average) of the within-set squared
distances:

max
�u

[�uT (ā− b̄)]2

1
M

∑
m[�uT�a′m]2 + 1

N

∑
n[�u

T�b′n]2

where {�am, 1 ≤ m ≤ M} and {�bn, 1 ≤ n ≤
N} are the two data sets, ā, b̄ represent the
averages (centroids) of each data set, and
�a′m = �am − ā and�b′n = �bn − b̄.

data1

data2

histogram of projected values

data1 data2

discriminant

Rewriting in matrix form gives:

max
�u

�uT [(ā− b̄)(ā− b̄)T ]�u

�uT [A
TA
M + BTB

N ]�u

where A and B are matrices containing the �a′m and �b′n as their rows. This is now a quotient
of quadratic forms, and we transform to a standard Rayleigh Quotient by finding the eigen-
vector matrix associated with the denominator1. In particular, since the denominator matrix
is symmetric, it may be factorized as follows

[
ATA

M
+

BTB

N
] = V D2V T

where V is orthogonal and contains the eigenvectors of the matrix on the left hand side, and
D is diagonal and contains the square roots of the associated eigenvalues. Assuming the
eigenvalues are nonzero, we define a new vector related to �u by an invertible transformation:
�v = DV T�u. Then the optimization problem becomes:

max
�v

�vT [D−1V T (ā− b̄)(ā− b̄)TV D−1]�v

�vT�v

The optimal solution for �v is simply the eigenvector of the numerator matrix with the largest
associated eigenvalue.2 This may then be transformed back to obtain a solution for the optimal

1It can also be solved directly as a generalized eigenvector problem.
2In fact, the numerator matrix is the outer-product of a vector with itself, and a solution can be seen by inspec-

tion to be �v = D−1V T (ā− b̄).
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�u.

To emphasize the power of this approach,
consider the example shown to the right. On
the left are the two data sets, along with the
first Principal Component of the full data set.
Below this are the histograms for the two
data sets, as projected onto this first compo-
nent. On the right are the same two data
sets, plotted with Fisher’s Linear Discrimi-
nant. The bottom right plot makes it clear
this provides a much better separation of the
two data sets (i.e., the two distributions in
the bottom right plot have far less overlap
than in the bottom left plot).

PCA Fisher
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