
Section 2: Least Squares

Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2024

min
�

X

n

(yn � �xn)
2

Least squares regression:

In the space of measurements:
y

x

“objective” or “error"
function

[Gauss, 1795 - age 18!]

�

Er
ro

r

y

x

“objective function”

min
�

X

n

(yn � �xn)
2

�

Er
ro

r

y

x

“objective function”

min
�

X

n

(yn � �xn)
2

�

Er
ro

r

y

x

“objective function”

min
�

X

n

(yn � �xn)
2

�

Er
ro

r

y

x

“objective function”

min
�

X

n

(yn � �xn)
2

�

Er
ro

r

y

x

“objective function”

min
�

X

n

(yn � �xn)
2

�

Er
ro

r

y

x

“objective function”

min
�

X

n

(yn � �xn)
2

�

Er
ro

r

y

x �

Er
ro

r

y

x �

Er
ro

r

y

x �

Er
ro

r

y

x �

Er
ro

r

y

x �

Er
ro

r

y

x

min
�

X

n

(yn � �xn)
2

�̂ = argmin
�

X

n

(yn � �xn)
2

can solve this with
calculus… [on board]

��

0
5

10
15

20
25

30
0

0.
510

5
10

15
20

25
30

−2024

~x~y RegressorObservation

... or, with linear
algebra!

= min
�

||~y � �~x||2

min
�

X

n

(yn � �xn)
2

βopt

Geometry:

Note: this is a 2-D cartoon
of the N-D vectors, not the

two-dimensional (x,y)
measurement space of

previous plots!

||~y||2 = ||�opt~x||2 + ||~y � �opt~x||2
Note: partition of sum of squared data values:

= min
�

||~y � �~x||2

explained residual

� =�

~x

0
5

10
15

20
25

30
−2020

5
10

15
20

25
30

0

0.
510

5
10

15
20

25
30

−2024

RegressorObservation Residual
error~y

min
~�

||~y �
X

k

�k~xk||2 = min
~�

||~y �X~�||2Multiple
regression:

0

0.
51

1.
5 0

5
10

15
20

25
30

0

0.
2

0.
4

0.
6

0.
8 0

5
10

15
20

25
30

0

0.
51

1.
5 0

5
10

15
20

25
30

!y !x1

(observation)

!x2

_ _ β2β1

(regressor 1) (regressor 2)

2D example:

XT
⇣
~y �X~�

⌘
= ~0

Alternatively, can solve using SVD...

Solution via the “Orthogonality Principle”:

Construct matrix , containing columns and X ~x1 ~x2

Orthogonality:

~y

~x1

~x2
X ~�opt

2D vector space
containing all linear
combinations of
and

~x1

~x2

{

Error
vector

~�⇤
opt = S#~y⇤

�⇤
opt,k = y⇤k/sk, for each k

[on board: transformations, elliptical geometry]

Solution:

or) ~�opt = V S#UT~y

Fitting a parametric model (general)

Experimental Data:

Ingredients: data, model, error function, optimization method

Retina
Optic
Nerve

LGN
Optic
Tract

Visual
Cortex

~xn ~yn

optimize parameters to minimize an error function:

To fit model to data , f�(~x) {~xn, ~yn}

min
�

X

n

E (~yn, f�(~xn))

�

Model: f�(~x)

statAnMod - 9/12/07 - E.P. Simoncelli

Optimization

Smooth (C2)

Convex

Quadratic

Closed-form
guaranteed

Iterative descent,
(possibly) nonunique

Iterative descent,
guaranteed

Heuristics,
exhaustive search,
(pain & suffering)

Interpretation warning: fitting a line does not
guarantee data actually lie along a line
These 4 data sets give the same regression fit, and same error:

[Anscombe, 1973]

(need a
better
model)

(need a
better
error

metric)

(need a
better

experiment)

� �1 �2

0
5

10
15

20
25

30
0

0.
51 0

5
10

15
20

25
30

−0
.50

0.
50

5
10

15
20

25
30

0

0.
51

�0

~x0 ~x1 ~x2

Observation
~y

� �

0
5

10
15

20
25

30
0

0.
1

0.
2

Polynomial regression

constant linear quadratic

Polynomial regression - how many terms?

(to be continued, when we get to “statistics”...)

Weighted Least Squares

min
�

X

n

[wn(yn � �xn)]
2

= min
�

||W (~y � �~x)||2

diagonal matrix

Solution via simple extensions of basic regression solution
(i.e., let and then solve for) ~y ⇤ = W~y ~x ⇤ = W~x �

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Outliers

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

data
true
LSfit

Outliers

-1 0 1 2 3
error (y- opt x)

0

1

2

3

4

5

6

7

8

co
un

t

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

data
true
LSfit
trimmedLSfit

“Trimming”… discard points with large error
(note: a special case of weighted least squares)

Trimming can be done iteratively (discard outlier, re-fit, repeat),
a so-called “greedy” method. When should you stop?

More generally, use a “robust” error metric.
For example:

“Lorentzian”

f(d) = log(c2 + d2)

f(d) = d2

Note: generally can’t obtain solution directly (i.e., requires an
iterative optimization procedure, such as gradient descent).
In some cases, can use iteratively re-weighted least squares (IRLS)...

<latexit sha1_base64="dEDbeHvDHF8JpL/sM8hPpHkBKNQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDabSbt0swm7G6GU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGLZYIhLVCahGwSW2DDcCO6lCGgcC28HoJvfbT6g0T+SDGafox3QgecQZNVa6Dyv9as2tuzOQZeIVpAYFmv3qVy9MWBajNExQrbuemxp/QpXhTOC00ss0ppSN6AC7lkoao/Yns0un5MQqIYkSZUsaMlN/T0xorPU4DmxnTM1QL3q5+J/XzUx05U+4TDODks0XRZkgJiH52yTkCpkRY0soU9zeStiQKsqMDScPwVt8eZk8ntW9i7p3d15rXBdxlOEIjuEUPLiEBtxCE1rAIIJneIU3Z+S8OO/Ox7y15BQzh/AHzucP/lGNAg==</latexit>

d

f(d)

d2

w(0)
n = 1

Iteratively Re-weighted Least Squares (IRLS)

initialize:

(one of many variants)

iterateiterate
<latexit sha1_base64="0uTzIPgduXYbtuFL84w/8peD4eE=">AAACRXicbZBLaxsxFIU16SOu+3LTZTeXmFKHUjNTQptNwDSbLl2IH+BxB418xxbRaAbpTomZzJ/rJvvs8g+yyaKlZJvKj0Wb+ILgcM65SPriXElLvn/pbT14+Ojxdu1J/emz5y9eNl7t9G1WGIE9kanMDGNuUUmNPZKkcJgb5GmscBCfHC3ywQ80Vmb6mOY5jlM+1TKRgpOzokYYZilOeaS/ly35Ptir4BBChQmdQZgYLkpI3rXmkYYPEMZIfFFzpdNI70FVwsakgtDI6YzOokbTb/vLgfsiWIsmW083alyEk0wUKWoSils7CvycxiU3JIXCqh4WFnMuTvgUR05qnqIdl0sKFbx1zgSSzLijCZbuvxslT62dp7Frppxm9m62MDdlo4KSg3EpdV4QarG6KCkUUAYLpDCRBgWpuRNcGOneCmLGHTxy4OsOQnD3y/dF/2M7+NQOvu03O1/WOGrsDdtlLRawz6zDvrIu6zHBfrIr9ov99s69a++Pd7Oqbnnrndfsv/Fu/wLCEq+D</latexit>

!(i+1)
n =

����
f 0(yn � �(i)xn)

yn � �(i)xn

����

<latexit sha1_base64="/eYOMMgRoqM4jJF+hlEmUXV0Yno=">AAACPXicbVCxThtBFNwjQMAh4ECZZoUVyRSx7hACmkiINJREwoDkM6d363fnFbt7p913EdbJP0bDP6RLlyZFoigtbdb2FQlkpJVGM/P09k1aKukoDL8GSy+WV1Zfrq23Xm283txqv9m+dEVlBfZFoQp7nYJDJQ32SZLC69Ii6FThVXr7ceZffUbrZGEuaFLiUENuZCYFkJeS9kWcIsFN3ZV7U/6Bx2BzHmtpkrnOY1fpxPC40JhDYppcrDCjLp945z1fBO9mKSvzMe3d7CftTtgL5+DPSdSQDmtwnrS/xKNCVBoNCQXODaKwpGENlqRQOG3FlcMSxC3kOPDUgEY3rOfXT/k7r4x4Vlj/DPG5+vdEDdq5iU59UgON3VNvJv7PG1SUHQ9racqK0IjFoqxSnAo+q5KPpEVBauIJCCv9X7kYgwVBvvCWLyF6evJzcrnfiw570aeDzslpU8cae8t2WZdF7IidsDN2zvpMsHv2jf1gP4OH4HvwK/i9iC4FzcwO+wfB4x+Cq6z9</latexit>

�(i) = argmin
�

X

n

!(i)
n (yn � �xn)

2

<latexit sha1_base64="dEDbeHvDHF8JpL/sM8hPpHkBKNQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDabSbt0swm7G6GU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGLZYIhLVCahGwSW2DDcCO6lCGgcC28HoJvfbT6g0T+SDGafox3QgecQZNVa6Dyv9as2tuzOQZeIVpAYFmv3qVy9MWBajNExQrbuemxp/QpXhTOC00ss0ppSN6AC7lkoao/Yns0un5MQqIYkSZUsaMlN/T0xorPU4DmxnTM1QL3q5+J/XzUx05U+4TDODks0XRZkgJiH52yTkCpkRY0soU9zeStiQKsqMDScPwVt8eZk8ntW9i7p3d15rXBdxlOEIjuEUPLiEBtxCE1rAIIJneIU3Z+S8OO/Ox7y15BQzh/AHzucP/lGNAg==</latexit>

d

Constrained Least Squares

, where

Can be solved exactly using linear algebra (SVD)...
[on board, with geometry]

<latexit sha1_base64="BmGAd0cvtX7MfDclIt1RFvvcv+U=">AAACWXicbVFdaxNBFJ1dbRvjV7SPvlwMgg8SdouoL4WiLz5WMG0gE8Pdyd1k6MzsOnO3Etb8SR8E8a/44CQNGlsPDBzOuYc7c6aojQ6cZT+S9Nbtvf2Dzp3u3Xv3HzzsPXp8FqrGKxqqylR+VGAgox0NWbOhUe0JbWHovLh4t/bPL8kHXbmPvKxpYnHudKkVcpSmvVqin0ur3bSVl6RaWRDjagXSUMnyK4xgRwbp9XwR5U9HL0B+bnAG0Epv4cuCPEmQ8Ce4k/obgmPIp71+Nsg2gJsk35K+2OJ02vsmZ5VqLDlWBkMY51nNkxY9a2Vo1ZVNoBrVBc5pHKlDS2HSbppZwbOozKCsfDyOYaPuJlq0ISxtESct8iJc99bi/7xxw+WbSatd3TA5dbWobAxwBeuaYaY9KTbLSFB5He8KaoEeFcfP6MYS8utPvknOjgb5q0H+4WX/5O22jo54Ip6K5yIXr8WJeC9OxVAo8V38SvaS/eRnmqSdtHs1mibbzKH4B+nhb/FCtGM=</latexit>

argmin
~�

���X~�
���
2
, where

���~�
���
2
= 1

<latexit sha1_base64="1KtDsFkVlw77B4WVqGkJAHEz8lQ=">AAACXHicbVHLahsxFNVM0sZxmtZtIJtuLjWFLlozE0rTTSEkmyxTiBOD5RiNfMcWkTRT6U6Kmc5PZpdNfqWVH4s8ekFwOA+udJSVWnlKkrso3th88XKrtd3eebX7+k3n7bsLX1ROYl8WunCDTHjUymKfFGkclA6FyTReZtcnC/3yBp1XhT2neYkjI6ZW5UoKCtS447lwU26UHdf8BmXNMyTRNMA15sT/wJKcN/AFBvDAANyp6SwYrg4+A/9ViQlAzZ2B3zN0yIFDs7LL5ur8UfAHpONON+kly4HnIF2DLlvP2bhzyyeFrAxaklp4P0yTkka1cKSkxqbNK4+lkNdiisMArTDoR/WynAY+BmYCeeHCsQRL9mGiFsb7ucmC0wia+afagvyfNqwo/z6qlS0rQitXi/JKAxWwaBomyqEkPQ9ASKfCXUHOhBOSwn+0Qwnp0yc/BxcHvfRbL/35tXt0vK6jxd6zD+wTS9khO2Kn7Iz1mWR37G/Uiraj+3gz3ol3V9Y4Wmf22KOJ9/8BjYS0/w==</latexit>

argmin
~�

���~y �X~�
���
2
, where ~cT ~� = 1

Linear constraint:

Quadratic constraint:

~� :

unconstrained: ~�opt = V S#UT~y

ĉT ~� = ↵

min
~�

���~y � USV T ~�
���

~�⇤
opt = S#~y ⇤

(ĉ⇤)T ~�⇤ = ↵

min
~�⇤

���~y ⇤ � S~�⇤
���

~y ⇤ = UT~y

ĉ⇤ = V T ĉ

(~c ⇤⇤)T ~�⇤⇤ = ↵

~�⇤⇤
opt = ~y ⇤⇤

min
~�⇤⇤

���~y ⇤⇤ � ~�⇤⇤
���

~c ⇤⇤ = (S⇤)�1 ĉ ⇤

~y ⇤⇤ = top two elements of ~y ⇤

rotate by V T

~�⇤ = V T ~�

ĉ⇤

stretch/squeeze by S⇤ (nonzero rows of S)

~�⇤⇤ = S⇤~�⇤

~c ⇤⇤
ĉ

constraint:

~� ⇤ = (S⇤)�1 ~� ⇤⇤
~� = V ~� ⇤

~� :

rotate by V T

~�⇤ = V T ~�

ĉ⇤

stretch/squeeze by S⇤ (nonzero rows of S)

~�⇤⇤ = S⇤~�⇤

~c ⇤⇤
ĉ

) � =
↵� (~c ⇤⇤)T ~y ⇤⇤

(~c ⇤⇤)T ~c ⇤⇤

(~c ⇤⇤)T ~� ⇤⇤ = (~c ⇤⇤)T (~y ⇤⇤ + �~c ⇤⇤) = ↵

Solve for � :

~� ⇤⇤
c,opt = ~y ⇤⇤ + �~c ⇤⇤~y ⇤⇤Write solution as: ~�c,opt = V (S⇤)�1 (~y ⇤⇤ + �~c ⇤⇤)

Solution:

y

x

Error is vertical distance
(in the “dependent
variable”) from the fitted
line...

Standard Least Squares regression

argmin
�

||~y � �~x||2

Total Least Squares Regression
(a.k.a “orthogonal regression”)

Error is squared distance
from the fitted line...

Note: “data” matrix D now includes both x and y coordinates

û

min
û

||Dû||2, where ||û||2 = 1expressed as:

First two components
of (rest are zero!),
for three example ’s.

V T
S

û û⇤

~u⇤⇤

||USV T û||2 = ||SV T û||2 = ||Sû⇤||2 = ||~u⇤⇤||2,
where D = USV T , û⇤ = V T û, ~u⇤⇤ = Sû⇤

V

S

Set of ’s of
length 1

(i.e., unit vectors)

min
max

Set of ’s of
length 1

(i.e., unit vectors)

û û⇤

~u⇤⇤

Variance of data , projected onto axis :ûD

Total Least Squares Regression
(a.k.a “orthogonal regression”)

Error is squared distance
from the fitted line...

Note: “data” matrix D now includes both x and y coordinates

û

min
û

||Dû||2, where ||û||2 = 1expressed as:

Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse
(ellipsoid), centered around the mean, using a simple procedure:
(1) Subtract mean of all data points, to re-center around origin
(2) Assemble centered data vectors in rows of a matrix, D
(3) Compute the SVD:

 or just use the smaller matrix

(4) Columns of V are the principal components (axes) of
the ellipsoid, diagonal elements or are the
corresponding principle radii, and their product is the volume.

D = USV T

sk
p

�k

C = DTD = V STSV T

= V ⇤V T

Model network

Biological network
Population analysis Compare

Model
with Data

Refine
Model

n1n2

n3

Time

Time

s2

s1

s1

s2

n1n2

n3

n1

n2

n3

n1

n2

n3

Fig 1. Relating biological and model networks using population analyses: Because
a model network typically does not attempt to replicate the precise anatomical connectivity of a
biological network, there is not a one-to-one correspondence of each biological neuron with a
model neuron. Dimensionality reduction can be used to obtain a concise summary of the
population activity from each network. This provides common ground for incisive comparisons
between biological and model networks. Discrepancies in the population activity structure
between biological and model networks can then help to refine model networks.

low-dimensional representation describes a neuronal process being carried out by the larger 44

circuit from which the neurons were recorded [32,35]. The same dimensionality reduction 45

method can be applied to the recorded activity and to the network model activity, resulting in 46

population activity structures that can be directly compared (Fig. 1). This benefit is also true 47

of related methods for comparing neuronal recordings and network models involving neuronal 48

decoding, population response similarity, and predicting the activity of one neuron from a 49

population of other neurons [3]. 50

Dimensionality reduction has been adopted by recent studies to relate neuronal recordings 51

and network models to study working memory, decision making, motor control, and more. 52

Although many studies have separately employed large-scale neuronal recordings, large-scale 53

network models, and dimensionality reduction, this review focuses on studies that incorporate 54

all three components. Below we describe these studies, organized by the aspect of population 55

activity structure used to relate neuronal recordings and network models: population activity 56

time courses, functionally-defined neuronal subspaces, and population-wide neuronal variability. 57

These were chosen first because they represent the key ways in which dimensionality reduction 58

has been used in the literature to relate population recordings and network models. More 59

importantly, these three categories represent fundamental aspects of population activity 60

structure – how it unfolds over time, how different types of information can be encoded in 61

different subspaces, and how it varies from trial to trial. 62

Population activity time courses 63

Dynamical structures, such as point attractors, line attractors, and limit cycles, arising from 64

network models have long been hypothesized to underlie the computational ability of biological 65

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27340v2 | CC BY 4.0 Open Access | rec: 25 Jan 2019, publ: 25 Jan 2019

[Williamson, Doiron, Smith, Yu 2019]

defining feature of movement is change with time, progress may
benefit from more detailed comparisons of time-evolving pat-
terns of neural and muscle activity. To afford such comparisons,
an ideal task would achieve the traditional goal of dissociating
kinematics from muscle activity (Kakei et al., 1999; Scott and
Kalaska, 1997), but in the temporal rather than spatial domain.
This has been achieved during reaches (Churchland and
Shenoy, 2007; Sergio et al., 2005), but more extended move-
ments could improve the power of such comparisons.

Unlike in sensory systems where responses strongly reflect
incoming stimuli, time-evolving responses in the motor system
may reflect computations performed by internal and feedback
dynamics. A growing body of work seeks to understand neural
responses in terms of signals that a recurrent or feedback-driven
neural network would need to perform the relevant task (Henne-
quin et al., 2014; Li et al., 2016; Lillicrap and Scott, 2013; Mante
et al., 2013; Michaels et al., 2016; Sussillo and Barak, 2013).
Althoughmultiple network solutions are typically possible, broad
principles can still apply. For example, the simple constraint of
a smooth dynamical flow-field explains aspects of neural dy-
namics during reaching (Sussillo et al., 2015).

Here,we leveragea ‘‘cycling’’ task that evokedextendedmove-
ments with simple kinematics driven by temporally complex pat-
ternsofmuscleactivity.We found that singleneuronsandmuscles
shared many temporal response properties. Yet the neural popu-
lation as a whole was dominated by signals that were not muscle-
like and were not explained by velocity/direction coding. Seeking
an alternative explanation, we focused on a basic principle of
recurrent and feedback-driven networks: the present network
state strongly influences the future state. Thus, two similar pat-
terns of activity, observed at different moments, should not lead

tohighlydissimilarpatterns in thenear future.Werefer toviolations
of this principle as ‘‘trajectory tangling.’’ Moments of high tangling
imply either a potential instability in network dynamics or a
moment when the system must rely on external commands.
Tangling was often high for muscle population trajectories. This

was expected: muscles reflect descending commands and need
not avoid tangling. In contrast, tangling was very low for motor
cortex population trajectories. This was found not only during
cycling, but also during a reaching task, and in rodent during
reach-to-grasp and locomotion. However, low tangling was
anatomically specific and was not observed for primary visual or
somatosensory cortex.We found that the dominant signals inmo-
tor cortex were those that naturally reduced tangling. Using an
optimization approach, we could quantitatively predict the neural
population response based on only two principles: the need to
encode muscle-like commands and the need to ensure low
tangling. Network simulations confirm that low trajectory tangling
is computationally beneficial. Networks with lower tangling are
more noise robust. In summary, our data reveal a potentially gen-
eral property of motor cortex: muscle-like signals are present but
are relatively modest ‘‘ripples’’ riding on top of larger signals that
confer minimal tangling. Thus, the dominant signals in motor cor-
tex may serve not a representational function—encoding specific
variables—but rather a computational function: ensuring that out-
going commands can be generated reliably.

RESULTS

Task and Behavior
We trained two rhesus macaque monkeys to grasp a hand-
pedal and cycle for juice reward. Cycling produced movement

A B

C D

E F

G H

500 ms

cycle 1 2 3 4 5 6 7

40
 s

pk
/s

a.
u.

world position

vertical hand
position

M1_C078a Trapezius

Figure 1. Behavioral and Physiological Re-
sponses during Cycling
(A) Schematic of the task during forward cycling.

A green landscape indicated that virtual progress

required cycling forward.

(B) An orange landscape indicated that progress

required cycling backward.

(C) Behavioral data and spikes from one neuron

during an example session. Data are for a single

condition: forward/seven-cycle/bottom-start (mon-

key C). Trials are aligned to movement onset and

ordered from fastest to slowest.

(D) Behavioral data and raw trapezius EMG

for one condition: backward/seven-cycle/bottom-

start (monkey D).

(E) Data from (C) after temporal scaling to align

trials.

(F) Data from (D) after temporal scaling.

(G) Trial-averaged and filtered neural activity for

the example neuron in (C) and (E). Envelopes show

the standard error of the mean (SEM), which was

often within the trace width. Shading tracks

vertical hand position: lightest at top and darkest

at bottom. Small tick marks indicate each cycle’s

completion.

(H) Rectified, filtered, and trial-averaged EMG for

the example in (D) and (F).

954 Neuron 97, 953–966, February 21, 2018

[Russo et. al., 2018]
displayed differences in amplitude or temporal profile compared
to middle cycles (e.g., Figure 2D, forward; Figure 3D, forward;
Figure 3E, backward). This effect presumably relates to the
unique force patterns required to start and stop. Third, re-
sponses could differ between forward and backward cycling in
both amplitude (e.g., Figures 2C and 3C) and structure (e.g., Fig-
ures 2E, 3A, and 3F).

Consistent with these shared features, muscle responses
could be successfully decoded from the neural population using
a linear model (leave-one-out-cross-validated R2 = 0.80 and
0.78) consistent with prior studies (Griffin et al., 2008; Morrow
et al., 2009; Schieber and Rivlis, 2007). This is potentially impres-
sive, given that a linear model is almost certainly too simplistic.
This finding might suggest that motor cortex activity primarily re-
flectsmuscle-like commands. However, decoding neural activity
from muscle activity was less successful (leave-one-out-cross-
validated R2 = 0.54 and 0.50). This discrepancy in fit quality
was not simply due to neural recordings having higher
sampling error than muscle recordings. The same discrepancy

A

B

C

D

E

F

PMd_C044a

PMd_D053c

M1_D038d

M1_D033b

500 ms

M1_D020b

40
 s

pk
/s

backwardforward

M1_C078a

top-start

bottom-
start

Figure 3. Responses of Six Example Motor
Cortex Neurons
Format as for Figure 2.

(A–F) Average firing rate was computed across

a median of 15 trials/condition per neuron.

Neuron names indicate primary motor cortex (M1)

versus dorsal premotor cortex (PMd) and monkey

(D versus C). Calibrations are 40 spikes/s.

was observed when neural responses
were de-noised using dimensionality
reduction techniques (STAR Methods).
Thus, while muscle-like signals can be
found in the neural data, there exist addi-
tional, non-muscle-like neural response
patterns.

Non-muscle-like Signals Dominate
the Neural Population Response
To characterize population responses,
we applied principal component analysis
(PCA), a standard unsupervised algo-
rithm that identifies the dominant signals
in multi-dimensional data (Figure 4).
Each such signal is a weighted combina-
tion of individual-neuron responses, with
those weights (the PCs) optimized such
that a small number of signals faithfully
summarizes the full population response.
We first examine the signals captured by
the top two PCs. Plotting these signals
versus one another yields a state-space
trajectory (Figure 4C). Each point on the
trajectory (e.g., the orange dot in Fig-
ure 4C) corresponds to the neural state
at one moment (dashed line in Figures
4A and 4B). A two-dimensional trajectory
provides only a partial summary of the

neural state, but the resulting visualization can still be informative
and inspire hypotheses.
Neural trajectories for monkey D are shown during both

forward and backward cycling (Figure 4E, top and bottom
subpanels). Top-start and bottom-start trajectories are superim-
posed. For monkey C, trajectories during forward and backward
cycling are also superimposed (Figure 4H). For illustrative pur-
poses, data are shown only for seven-cycle conditions (as in Fig-
ures 1, 2, and 3). Middle cycles (3–5) are highlighted in color.
Neural trajectories followed repeating orbits throughout the
middle cycles. Rotating orbits are expected during cycling, in
contrast to reaching (Churchland et al., 2012), and simply reflect
what can be observed in single neurons:middle-cycle responses
tend to repeat. Muscle trajectories also followed repeating orbits
(Figures 4D and 4G). Despite this basic similarity, neural and
muscle trajectories behaved differently. Muscle trajectories
counter-rotated: they orbited in opposing directions for forward
and backward cycling. Counter-rotation is expected given the
reversal of required force patterns. For example, forward cycling

956 Neuron 97, 953–966, February 21, 2018

requires lifting before pushing and backward cycling requires
pushing before lifting. In contrast, neural trajectories co-rotated:
they orbited in the same direction for forward and backward
cycling. Furthermore, muscle trajectories tended to depart
from circular: the orbit often possessed a kidney- or saddle-
like shape. In contrast, neural trajectories were more circular or
elliptical. Thus, the dominant signals in the neural population
differ from those in the muscle population.

Potential Explanations and Caveats
A potential explanation for non-muscle-like patterns in motor
cortex is that they encode directional signals such as hand
velocity (e.g., Moran and Schwartz, 1999b). This explanation
initially seems appealing given the present data. For example,
the neural trajectory during backward cycling for monkey D (Fig-
ure 4E, bottom) visually resembles the corresponding velocity
trajectory (Figure 4F, bottom). However, velocity trajectories
necessarily counter-rotate between forward and backward
cycling (the same would be true of hand direction or position).
The dominant signals in the neural data do just the opposite.
Combined with the fact that single-neuron response profiles
typically do not resemble hand velocity or position traces, it
seems unlikely that a simple representation of kinematic param-
eters can explain the dominant neural signals.

An alternative explanation is that the dominant neural signals
may constitute descending commands to the muscles, yet may
look non-muscle-like because theywill be heavilymodified by spi-
nal circuitry. Cortical commands are likely integrated/low-pass
filtered by the spinal cord (Shalit et al., 2012) and may encode
muscle synergies rather than individual-muscle activations (Hart
and Giszter, 2010). However, any commands related to force are
almost certain to reverse between forward and backward cycling
due to the reversal of required force patterns. Thus, the dominant
signals in theneural dataare not readily explained in termsof either
muscle-command encoding or kinematic encoding. Of course,
this does not rule out the possibility that muscle-like commands
(or kinematic commands) are encoded in dimensions beyond
the top two PCs. Indeed, we will suggest below that muscle-like
commands likely are encoded. Yet, one is tempted to question
the assumption that the dominant signals encode commands of
any sort. Might there exist an alternative explanation?

Smooth Dynamics Predict Low Trajectory Tangling
Recent physiological and theoretical investigations suggest
that the neural state in motor cortex obeys smooth dynamics
(Churchland et al., 2012; Hall et al., 2014; Michaels et al., 2016;
Seely et al., 2016; Sussillo et al., 2015). Smooth dynamics imply
that neural trajectories should not be tangled: similar neural

-0.5 0.5PC 1

-0.5

0.5

PC
 2

-0.5 0.5PC 1 -0.5 0.5PC 1

D E F

G H I

A B C

-0.5 0.5

Motor Cortex

-0.5

0.5

PC
 2

-0.5 0.5

-0.5

0.5

PC
 2

EMG

-0.5 0.5

Velocity
forward

backward

-1 1PC 1

-1

1

PC
 2

xt

0 1 2 3
Time from movement onset (s)

neuron 1

neuron 2

neuron N

. . .

t

PCA

0 1 2 3
Time from movement onset (s)

PC 1

PC 2

t

. . .

PC k

Monkey D

Monkey C

PC 1PC 1 PC 1

Figure 4. Visualization of Population Struc-
ture via PCA
(A) PCA operates on a population of responses

(6 of 103 neurons are shown). Green traces

highlight themiddle cycles used to find the PCs for

this visualization (subsequent analyses consider

all times). PCs were computed based on cycling in

both directions and both starting positions. Data

are plotted only for the forward, bottom-start

condition.

(B) Projections onto the PCs. The neural state at a

given time (orange line) can be summarized by the

values of the projections at that time.

(C) Corresponding neural trajectory. The projec-

tion onto the second PC is plotted against that

onto the first (!35% of variance is captured in

these dimensions). Orange dot shows the neural

state at the same time as in (A) and (B).

(D) Muscle trajectories captured by projecting

the muscle population response onto its first two

PCs (monkey D). Trajectories are shown for for-

ward and backward cycling, using the same PCs.

Trajectories for top- and bottom-start conditions

(lighter and darker colored traces, respectively)

are overlaid.

(E) Corresponding neural trajectories.

(F) Corresponding hand-velocity trajectories, pro-

duced by applying PCA to horizontal and vertical

velocity across multiple sessions. This is similar

(but for a change of axes) to plotting average

vertical versus horizontal velocity.

(G–I) PCA-based muscle, neural, and velocity

trajectories for monkey C. Same format as (D)–(F),

but trajectories for forward and backward cycling

are overlaid.

Neuron 97, 953–966, February 21, 2018 957

Example: PCA for dimensionality reduction and visualization

Eigenvectors/eigenvalues

• For matrix the columns of (denoted)
are eigenvectors, with corresponding eigenvalues :

V

• An eigenvector of a matrix is a vector that is rescaled by the matrix
(i.e., the direction is unchanged)

• The corresponding scale factor is called the eigenvalue

C = DTD = V ⇤V T

�k

Cv̂k = V ⇤V T v̂k

= V ⇤êk

= �kv̂k

