Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2024

Section 3:
Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

® [inearity (previously discussed):

“linear combination in, linear combination out”

® Shift-invariance (new property):

“shifted vector in, shifted vector out”

® These two properties are independent (think of
some examples that have both, one, or neither)

LSI system

As before, express input as a sum of
“impulses”, weighted by elements of x

LSI system

Input

%

1 it
))

— L

+ I3 + T3
+I44‘; +$44J_Lx_g

e Linearity => response to X is sum of
responses to impulses, weighted by
elements of x

* Shift-invariance => responses to
impulses are shifted copies of each other

LSI system

Input

%

1 it

+I44‘; +$44J_Lx_g

N Output
7 utpu

LSI systems are characterized by their “impulse response”

Convolution matrix

reversed
impulse
1 response
o]
o _o—] -
re o o—

impulse le Lo 1
response le
iEH .

boundaries?

8

Convolution

y(n) = Y r(n—ka(k)

~ | | . = > r(k)a(n—k)

| k

® Sliding dot product
® Structured matrix
® Boundaries? zero-padding, reflection, circular
e Examples: impulse, delay, average, difference

Feedback LSI system
T 1 | I | | I | 1

* Response depends on input, and
k é) previous outputs
/fv i * Infinite impulse response (IIR)
| | | * Recursive => possibly unstable
27 | |

y(n) =Y fn—k)z(k)+ Y _ gln — k)y(k)
k k

(For this class, we’ll stick to feedforward (FIR) systems)

2D convolution
“sliding window”

Kernel
matrix

@ |~ Column

Input
image

Row i —»,

Array of
products

Summer Scaling
constant

[figure ¢/o Castleman]

“separable” filter

® Quter product
® Simple design/implementation
e Efficient computation

[figure: Adelson & Bergen 85]

Discrete Sinusoids

example : k=2

(» “frequency” (cycles/vectorLength)

cos(wn), w = 20k/N) It P 51l P il

-1
0 10 20 30
L» “frequency”

(radlans/sample) example : A=1.5, ¢ =8r/32

i R
F F

More generally: A cos(wn — ¢) 0

* -1
“amplitude” 2% 10 20 30
“phase” (radians)
Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

... using a well-known trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

We’ll also need conversions between polar
and rectangular coordinates:

x = Acos(¢), y= Asin(¢)

A=a?+y? ¢ =tan"'(y/z)

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

scale factors:

il

hiiie o111
A QI

Asin¢

Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

Ao ez I . Al

;WT@A) Jﬂm%& QYT 5 lll 10 :lml& 30
A ool Il

Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

Aote emeene I . Al

l LTTWTTL LTTWTTL 4‘» L lllm Zo&lmlg)]
. ool Il

Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

LSI response to sinusoids

-%'('I’L) = COS(wn) (input)

y(n) = Z r(m) coS (w(n —_ m)) (convolution formula)

m

LSI response to sinusoids

x(n) = cos(wn)

y(n) = Z (m) cos (w(n —m)) (trig identity)

cos(wn -sm wn)

inner product of impulse response with cos/sin, respectively

T | L AR

LSI response to sinusoids

x(n) = cos(wn)

y(n) =) cos (w(n —m))
-COS(WTL ’Sln wn)
= cos(wn) sin(wn)

AT S —| L= RN

LSI response to sinusoids
x(n) = cos(wn)

y(n) = Y r(m)cos(w(n —m))

m

= Zr(m) cos(wm) cos(wn) + Zr(m) sin(wm) sin(wn)

m m

= cr(w) cos(wn) + sr(w) sin(wn)

A (w) cos(¢r(w))ecos(wn) + (A (w) sin(¢, (w))pin(wn)

(cartesian -> polar coordinates)
sr(w)

LSI response to sinusoids
x(n) = cos(wn)

y(n) = Y r(m)cos(w(n —m))

m

= Zr(m) cos(wm) cos(wn) + Zr(m) sin(wm) sin(wn)

m m

= cr(w) cos(wn) + sr(w) sin(wn)

A (w) cos(¢r(w)) cos(wn) + Ay (w)sin(¢,(w)) sin(wn)

= Ar (w) cos(wn — ¢r (w)) (trig identity, in the opposite direction)

or(w)
S — L | A

VAVAVS

“Sinusoid in, sinusoid out” (with modified amplitude & phase)

LSI response to sinusoids

More generally, if input has amplitude A, and phase ¢, ,

x(n) = Az cos(wn — @)

then linearity and shift-invariance tell us that

y(n) cos(wn

amplitudes multiply phases add
or(w)

wron [e EAAY

“Sinusoid in, sinusoid out” (with modified amplitude & phase)

The Discrete Fourier transform (DFT)

® Construct an orthogonal matrix of sin/cos pairs,
covering different numbers of cycles

® Frequency multiples of 27/N radians/sample,
(specifically, 2nk/N, for k=0,1,2,...N/2)

® For k=0 and k = N/2, only need the cosine part
(thus, N/2 + 1 cosines, and N/2 — 1 sines)

® When we apply this matrix to an input vector, think
of output as paired coordinates

e Common to plot these pairs as amplitude/phase

[details on board...]

Discrete Fourier Transform matrix

k=0 k=1 =2 k=3 k=N/2

S

2k . [2mk Note:
cos | —n sin | —n « plotted sinusoids are continuous, N=32
N N « first and last frequencies are cos only

The Fourier family

signal domain

continuous discrete
discrete-time Fourier transform

continuous | Fourier transform
discrete Fourier series @ discrete Fourier transform I

frequency
domain

(we are here)

The “fast Fourier transform” (FFT) is a computationally efficient
implementation of the DFT, requiring Nlog(N) operations,
compared to the N2 operations that would be needed for matrix

multiplication.

Reminder: LSI response to sinusoids
z(n) = cos(wn)
y(n) = Y r(m)cos(w(n—m))

= er(w) cos(wn) + sr(w) sin(wn)

Ap(w) cos(¢r(w)) cos(wn) + Ap(w)sin(e¢,(w)) sin(wn)

= A (w)cos(wn — ¢p(w))

These dot products are the Discrete Fourier Transform
of the impulse response, r(m)!

Fourier & LSI

T A Aoy —L L

Fourier & LSI

note: only 3 (of many) frequency components shown

Fourier & LSI

note: only 3 (of many) frequency components shown

Fourier & LSI

A(0) ————— Ar(0) x Az (0)
$x(1) @ (1) + ¢ (1)
A (1) T C L +A7»(1) x Ap(1) > o

6:(2) ?r(2) + ¢2(2)

Az(2) ™\ /N - Ar(2) x Az (2) ™\ 7\ /
I
7 MQW&_@
LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

el — cos(f) +isin(f) “Buler’s formula

”»

Ae™™ = Acos(wn) + iAsin(wn)

real part:

imaginary part:

[on board: reminders of additi ltiplication of complex numbers]

Complex exponentials:
“bundling” sine and cosine

eiwn L AT(UJ) ei(wnf@w(w)) _ AT(w) 67i¢”‘(w) eiwn
— eium

E.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

eiwn L AT(UJ) ei(wnf@w(w)) _ AT(w) 67i¢”‘(w) eiwn
— eium

E.T. of impulse response!

Note: the complex exponentials are eigenvectors!

The “convolution theorem”

T e—

convolve with 7

The “convolution theorem”

— Y
convolve with 7
pointwise multiply by 7
y

—

UWLIOJSURI], JOLINO
9SIoAUT

Fourier Transform
N — = 1

The “convolution theorem”
f g
convolve with 77
pointwise multiply by 7
@

§j=L%=FRF"% = FTj=RF"%
K (diagonal matrix) /J

UWLIOJSURI], JOLINO]
9SIoAUT

Fourier Transform
E
~

S}

Recap...

® Linear system
- defined by superposition

- characterized by a matrix

® Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector, which can be either:
» the impulse response

» the frequency response (amplitude and phase).
Specifically, the Fourier Transform of the impulse
response specifies an amplitude multiplier and a
phase shift for each frequency.

Discrete Fourier transform
(with complex numbers)

N-1
~ —iwEn 27k
T = E rne where wp = —
N
n=0
| V-1
Th= =) Tr e“F" (inverse)
N k=0

Redraw with spiral included!

[on board: why minus sign? why 1/N?]

Visualizing the (Discrete)
Fourier Transform

® Two conventional choices for frequency axis:
= Plot frequencies from k =0 to k = N/2

(in matlab: 1 to N/2+1)

= Plot frequencies from k =-N/2 to k= N/2 - 1

(in matlab: recenter using fftshift)

® Typically, we plot amplitude (and optionally,
phase), instead of the real/imaginary (cosine/sine)
components

Some examples

® constant

® sinusoid (see next slide)

® impulse

® Gaussian - “lowpass”

® Derivative of Gaussian - “bandpass”

® DoG (difference of 2 Gaussians) - “bandpass”

® Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]

W w

e = cos(wn) + isin(wn) e~ " = cos(wn) — isin(wn)

1 .)
cos(wn) = E(e“"" +e)

j (eiwn _ e*iwn)

sin(wn) = 5

Example for k=2, N=32 (note indexing and amplitudes):

7 F = ff6(7) fftshift(z)
i 511110 il el I " I
[e s -0 (e par) o
‘ ?TTTTT?(g NTTTTTH , ° [0 I
) [0) 1 |

What do we do with
Fourier Transforms?

* Represent/analyze periodic signals

* Analyze/design LSI systems. In particular, how do
you identify the nullspace?

Retinal ganglion cells (1D)

I” Cellno.1
ol : ,DUF .
Contee E Af’)\v\‘ //”\\
"
mimm_‘_umlu M
: ‘
A Y 8
‘ .
B R
Surround

a
2
S

Responsivity
(impulses per second)
3 8

¢

R RS A———|
001 01 10 10
Spatial frequency (cycles per degree)

Enroth-Cugell and Robson (1984)

Sampling causes “aliasing”

o

Sampling process is linear, but many-to-one (non-invertible)
“Aliasing” - one frequency masquerades as another jon board]

Given the samples, it is common/natural to assume, or enforce,
that they arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies

T
2w /A

Real-world
aliasing

downsample by 2

\ “Moir¢ pattern”

Pre-filtering to avoid spectral overlap (“aliasing”)

X (w) —[L(w)]—P/%—» X, (w)

| X s (w

|X(jl/\/‘/
lowpass filter,
W W\‘Tﬁ ac T/A

T T
—or/A 2 /A

Real-world
aliasing

downsample by 2,

\with pre-filtering

