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Linear shift-invariant (LSI) systems

• Linearity (previously discussed): 
“linear combination in, linear combination out”

• Shift-invariance (new property):  
“shifted vector in, shifted vector out”

• These two properties are independent (think of 
some examples that have both, one, or neither)
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As before, express input as a sum of 
“impulses”, weighted by elements of x
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• Shift-invariance => responses to 
impulses are shifted copies of each other

• Linearity => response to x is sum of 
responses to impulses, weighted by 
elements of x

LSI system

v

Input

v1 x

v4 x

v3 x

v2 x
L

Output

v1 x

v4 x

v3 x

v2 x+

+

+

+

+

+

LSI systems are characterized by their “impulse response”

Convolution matrix

impulse
response

reversed
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boundaries?



 Convolution

• Sliding dot product

• Structured matrix

• Boundaries? zero-padding, reflection, circular

• Examples: impulse, delay, average, difference
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 Feedback LSI system
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(For this class, we’ll stick to feedforward (FIR) systems)

• Response depends on input, and 
previous outputs 

• Infinite impulse response (IIR) 

• Recursive => possibly unstable

2D convolution

[figure c/o Castleman]

“sliding window”



• Outer product 
• Simple design/implementation
• Efficient computation

[figure: Adelson & Bergen 85]

“separable” filter

Discrete Sinusoids

More generally:

“amplitude”
“phase” (radians)

“frequency”
(radians/sample)

“frequency” (cycles/vectorLength)

, ! = 2⇡k/Ncos(!n)
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Shifting Sinusoids

... using a well-known trigonometric identity: 

cos(a� b) = cos(a) cos(b) + sin(a) sin(b)

We’ll also need conversions between polar 
and rectangular coordinates:

A =
p
x2 + y2, � = tan�1(y/x)

x = A cos(�), y = A sin(�)
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A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)



Shifting Sinusoids

A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)

Any scaled and shifted sinusoidal vector can be written 
as a weighted sum of two fixed {sin, cos} vectors!

  A sin φ
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 A = 1.6,  φ = 2π0/12

A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)

fixed cos/sin vectors:
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Shifting Sinusoids
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Any scaled and shifted sinusoidal vector can be written 
as a weighted sum of two fixed {sin, cos} vectors!
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A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)

fixed cos/sin vectors:

Shifting Sinusoids
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Any scaled and shifted sinusoidal vector can be written 
as a weighted sum of two fixed {sin, cos} vectors!



(convolution formula)

L

x(n) = cos(�n)

LSI response to sinusoids
(input)

x(n) = cos(�n)

inner product of impulse response with cos/sin, respectively

(trig identity)

LSI response to sinusoids

L

x(n) = cos(�n)

L

LSI response to sinusoids



x(n) = cos(�n)

  A sin φ

φ

  A cos φ
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(cartesian -> polar coordinates)

LSI response to sinusoids

x(n) = cos(�n)

L
“Sinusoid in, sinusoid out” (with modified amplitude & phase)

LSI response to sinusoids

(trig identity, in the opposite direction)

phases addamplitudes multiply

L
“Sinusoid in, sinusoid out” (with modified amplitude & phase)

More generally, if input has amplitude        and phase       ,Ax �x

then linearity and shift-invariance tell us that

LSI response to sinusoids



• Frequency multiples of             radians/sample, 
(specifically,                                                     )

• Construct an orthogonal matrix of sin/cos pairs, 
covering different numbers of cycles 

The Discrete Fourier transform (DFT)

[details on board...]

• When we apply this matrix to an input vector, think 
of output as paired coordinates

• Common to plot these pairs as amplitude/phase 

• For                                  , only need the cosine part 
(thus,                 cosines, and                sines)N/2� 1N/2 + 1

k=0 k=1 k=2 k=3

F   =

k=N/2

cos ( 2πk
N

n) sin ( 2πk
N

n) Note: 
• plotted sinusoids are continuous, N=32
• first and last frequencies are cos only

Discrete Fourier Transform matrix

The Fourier family

(we are here)

signal domain
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The “fast Fourier transform” (FFT) is a computationally efficient 
implementation of the DFT, requiring Nlog(N) operations, 
compared to the N2 operations that would be needed for matrix 
multiplication.



x(n) = cos(�n)

These dot products are the Discrete Fourier Transform 
of the impulse response, r(m)!

Reminder: LSI response to sinusoids

⇥x L

Fourier & LSI
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Fourier & LSI

note: only 3 (of many) frequency components shown



⇥x L

Fourier & LSI

note: only 3 (of many) frequency components shown
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LSI systems are characterized by their frequency response, 
specified by the Fourier Transform of their impulse response

⇥x L

Fourier & LSI

ei� = cos(�) + i sin(�)

n

n

real part:

imaginary part:

[on board: reminders of addition/multiplication of complex numbers]

Complex exponentials: 
 “bundling” sine and cosine

“Euler’s formula”

Aei!n = A cos(!n) + iA sin(!n)



ei�n L

Complex exponentials: 
 “bundling” sine and cosine

F.T. of impulse response!

ei�n L

F.T. of impulse response!

L

Note: the complex exponentials are eigenvectors!

Complex exponentials: 
 “bundling” sine and cosine

convolve with 

The “convolution theorem”



convolve with 
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The “convolution theorem”

The “convolution theorem”
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(diagonal matrix)

) FT~y = R̃FT~x

Recap…
• Linear system

- defined by superposition

- characterized by a matrix

•  Linear Shift-Invariant (LSI) system

- defined by superposition and shift-invariance

- characterized by a vector, which can be either:
» the impulse response
» the frequency response (amplitude and phase).  

Specifically, the Fourier Transform of the impulse 
response specifies an amplitude multiplier and a 
phase shift for each frequency.



Discrete Fourier transform 
(with complex numbers)

where ⇥k =
2�k

N

(inverse)

k
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r̃k ei!kn

[on board: why minus sign? why 1/N?]

are we missing a factor of two 
(because each basis function appears 
twice)?

Redraw with spiral included!

Visualizing the (Discrete)  
Fourier Transform

• Two conventional choices for frequency axis:

- Plot frequencies from k = 0 to k = N/2 
(in matlab: 1 to N/2+1) 

- Plot frequencies from k = -N/2 to k= N/2 - 1 
(in matlab: recenter using fftshift) 

• Typically, we plot amplitude (and optionally, 
phase), instead of the real/imaginary (cosine/sine) 
components

Some examples

• constant

• sinusoid (see next slide)

• impulse

• Gaussian - “lowpass”

• Derivative of Gaussian - “bandpass”

• DoG (difference of 2 Gaussians) - “bandpass”

• Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]



Example for k=2, N=32 (note indexing and amplitudes): 
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=>

e�i!n = cos(!n)� i sin(!n)

What do we do with 
Fourier Transforms?

• Represent/analyze periodic signals  

• Analyze/design LSI systems.  In particular, how do 
you identify the nullspace?

Retinal ganglion cells (1D)

Enroth-Cugell and Robson (1984)



Sampling causes “aliasing”

“Aliasing” - one frequency masquerades as another  [on board]

Sampling process is linear, but many-to-one (non-invertible)

Given the samples, it is common/natural to assume, or enforce, 
that they arose from the lowest compatible frequency... 

Effect of sampling on the Fourier Transform:
Sum of shifted copies

|X(!)|

|Xs(!)|

Real-world
aliasing

downsample by 2

“Moiré pattern”



Pre-filtering to avoid spectral overlap (“aliasing”)

L(!)

L(!)

lowpass filter, 
cutoff at   ⇡/�

|X(!)|

|Xs(!)|

Real-world
aliasing

                 ,  
with pre-filtering

downsample by 2


