
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2023
Mathematical Tools for Neural and Cognitive Science

Homework 4

Due: 16 Nov 2023
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please don’t
procrastinate until the day before the due date... start now!

1. Middleville. Middleville is a town of families, each with exactly two children. Each child
can have either blue eyes or green eyes, and a family can have any combination of blue-eyed
or green-eyed children. In this problem, you’ll use Matlab to simulate this situation and
compute approximate solutions.

• Create a function Bernoulli(alpha,M,N) that returns an MxN matrix of independently
and randomly selected 0s and 1s, where the probability of a 1 is alpha (i.e., the function
should generate MxN samples from the Bernoulli distribution with parameter alpha
formatted into a MxN matrix).

• Use your function to generate an example of 10 Middleville families (a 10x2 matrix),
assuming alpha=0.5. Compute a vector containing the indices of the families that have
at least one blue-eyed child. How many of these are there (as a fraction of the total
number of families)? Do this 50 times, computing the proportion containing at least one
blue-eyed child for each. Plot a histogram of these 50 values. What is the average value?
The standard deviation? Now do this all again, but for populations of 40 families, 90
families, and 160 families. What average and standard deviation do you measure for
each of these population sizes? In general, what happens to the average and standard
deviation as the number of families in the population grows?

• Now consider conditional probability P [A|B] where the event A is ”the family has one
or more green-eyed child” and the event B is ”the family has one or more blue-eyed
child”. What is the value of this (again, assuming alpha=0.5). Now estimate this from a
simulated population (as in previous part), in two different ways. First, find the indices
of all families satisfying B, make a new matrix containing these, and then compute the
proportion of these that satisfy A. Second, use the definition of conditional probability:
count the number of families satisfying both A and B, and then dividing by the number
satisfying B. Convince yourself that these compute the same value by running them both
on some large populations. As in 1B, run one of these methods on 50 populations of 10
families, and plot a histogram of the estimated values. Re-compute for a population of
10,000 families.

2. Poisson neurons. The Poisson distribution is commonly used to model neural spike counts:

p(k) =
µke−µ

k!
,

where k is the spike count (over some specified time interval), and µ is the expected number
of spikes over that interval.
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(a) We would like to know what the Poisson distribution looks like. Set the expected number
of spikes to µ = 6 spikes/interval then create a vector p of length 21, whose elements
contain the probabilities of Poisson spike counts for k = [0...20]. Since we’re clipping the
range at a maximum value of 20, you’ll need to normalize the vector so it sums to one
(the distribution given above is normalized over the range from 0 to infinity) to make
the vector p represent a valid probability distribution. Plot p in a bar plot and mark
the mean firing rate. Is it equal to µ? Why or why not?

(b) Generate samples from the Poisson distribution where each sample represents the number
of spikes and ranges from 0 to 20. To simplify the problem, use a clipped Poisson
vector p to write a function samples = randp(p, num) that generates num samples
from the probability distribution function (PDF) specified by p. [Hint: use the rand

function, which generates real values over the interval [0...1], and partition this interval
into portions proportional in size to the probabilities in p]. Test your function by drawing
1,000 samples from the Poisson distribution in (a), plotting a histogram of how many
times each value is sampled, and comparing this to the frequencies predicted by p.
Verify qualitatively that the answer gets closer (converges) as you increase the number
of samples (try 10 raised to powers [2, 3, 4, 5]).

(c) Imagine you’re recording with an electrode from two neurons simultaneously, whose
spikes have very similar waveforms (and thus can’t be distinguished by the spike sorting
software). Create a probability vector, q, for the second neuron, assuming a mean rate
of 4 spikes/interval. What is the probability distribution of the observed spike counts,
which will be the sum of spike counts from the two neurons derived from p and q? [Hint:
the output vector should have length m+n−1 when m and n are the lengths of the two
input PDFs. This is because the maximum spike count will be bigger than the maximum
of each respective individual neuron.]

Verify your answer by comparing it to the histogram of 1,000 samples generated by
summing two calls to randp (choose a big enough number of samples!).

(d) Now imagine you are recording from a neuron with mean rate 10 spikes/interval (the
sum of the rates from the neurons above). Plot the distribution of spike counts for this
neuron, in comparison with the distribution of the sum of the previous two neurons.
Based on the results of these two experiments, if we record a new spike train, can you
tell whether the spikes you have recorded came from one or two neurons just by looking
at their distribution of spike counts? Comment about the reason why based on the
intuition behind the Poisson distribution.

3. The Central Limit theorem. The Central Limit theorem states that the distribution of
the average of n independent samples drawn from any fixed distribution with finite mean and
variance, gets closer and closer to a Normal (Gaussian) distribution as n increases. Specif-
ically, if the mean and variance of the original distribution are µ and σ, the distribution of√
n(x̄− µ)/σ converges to N (0, 1) as n increases (where x̄ is the average of n samples).

(a) Generate 1,000 samples of two values each from a uniform distribution (use rand). Com-
pute the average of each sample (pair of values), and plot a histogram of these. What
shape is it, approximately? What shape should it have in the limit, as you gather more
and more samples (try with 100,000 samples)? Why?

(b) Now try this again with samples containing 3 values. How has the histogram changed?
Try sample sizes of 4 and 5 as well. When do you judge that the histogram starts looking
Normal?
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(c) Test the Normality of the distribution a bit more carefully, using a “Q-Q” (quantile-
quantile) plot (plot the quantiles of one distribution against another). If the two dis-
tributions match, the values should lie on a unit-slope line. For this problem, you can
use the matlab function normplot, which plots the quantiles of a sample of data against
those of a Normal distribution of the same mean and variance. First, try this on a
sample of 1,000 values from a normal distribution (use randn). The points should fall
(close to) a straight line, indicating that the sample is close to normal, as expected. Try
this a few times to see how the plot varies (you might want to put them on the same
graph, using matlab’s hold on command). Now call normplot on a sample of 1,000
values from a uniform distribution. Explain qualitatively why it has the shape it does
(hint: think about the quantiles of the uniform and Normal distributions). Do this for
averages of uniform samples of different size (2, 3, 4, ...). Keep increasing sample size
until you cannot tell the resulting QQ plot from the QQ plots for samples from the
Normal distribution. Roughly how big does the sample have to be?

4. Multi-dimensional Gaussians.

(a) Write a function samples = ndRandn(mean, cov, num) that generates a set of sam-
ples drawn from an N-dimensional Gaussian distribution with the specified mean (an
N-vector) and covariance (an NxN matrix). The parameter num should be optional
(defaulting to 1) and should specify the number of samples to return. The returned
value should be a matrix with num rows each containing a sample of N elements. (Hint:
use the MATLAB function randn to generate samples from an N-dimensional Gaus-
sian with zero mean and identity covariance matrix X, and then transform these to
achieve the desired mean and covariance. Recall that the covariance of Y = MX is
E(Y Y T ) = MCXM

T where CX is the covariance of X.) For this, use mean µ = [4, 5]
with CY = [10,−4;−4, 5] to sample and scatterplot 1,000 points to verify your function
worked as intended.

(b) Now consider the marginal distribution of a generalized 2-D Gaussian with mean µ and
covariance C in which samples are projected onto a unit vector û to obtain a 1-D dis-
tribution. Write a mathematical expression for the mean and variance of this marginal
distribution as a function of û and check it for a set of 48 unit vectors spaced evenly
around the unit circle. For each of these, compare the mean and variance predicted from
your mathematical expression to the sample mean and variance estimated by projecting
your 1,000 samples from part (a) onto û. Stem plot the mathematically computed mean
and the sample mean (on the same plot), and also plot the mathematical variance and
the sample variance, both plotted as a function of the orientation of û (relative to the
x-axis).

(c) Now scatterplot 1,000 new samples of a 2-dimensional Gaussian using the same µ and CY
from part (a). Measure the sample mean and covariance of your data points, comparing
to the values that you requested when calling the function. For each of the unit vectors
from (b), find the two points on the line through the sample mean in the direction of
that unit vector for which the Mahalanobis distance from the mean (i.e., the negative
of the exponent of the Gaussian density) is equal to one. Plot a closed contour that
connects all those points. Plot a second closed contour using the values of the mean and
covariance you used to generate your sample. Try this on three additional random data
sets with different means and covariance matrices. Does this contour capture the shape
of the data?
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(d) How would you, mathematically, compute the direction (unit vector) that maximizes
the variance of the marginal distribution? How would you compute the direction that
maximizes the distance corresponding to Mahalanobis distance equal to one? Compute
these directions and verify that they are consistent with your plot.


