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Section 5a:

Statistical Decision Theory
+

Signal Detection Theory

Signal Detection Theory (binary estimation)
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For equal-shape, unimodal, symmetric distributions,
the ML decision rule is a threshold function.

Signal Detection Theory: Potential outcomes

Doctor responds Doctor responds
“no” “yes’
Tumor miss hit
present
Tumor correct false
absent reject alarm

For criterion ¢, and cumulative
distribution functions P, e.g.,

P(cl S)=p(x=cl S)

: P(c1S) = p(miss)
decision 1-P(clS) = p(hit)
threshold or P(cIN) = p(correct reject)
criterion ¢ 1-P(cIN) = p(false alarm)

(357,221) = 328

More generally, decision rule can have multiple thresholds. ..
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Tumor, or not?
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MAP decision rule?

MAP solution maximizes proportion of correct
answers, taking prior probability into account.
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Compared to ML threshold, the MAP criterion moves
away from higher-probability option.



Bayes decision rule?

Incorporate values for the four possible outcomes:

Payoff Matrix
Response
Yes No
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Optimal Criterion

E(Yes|x) = Vis,p(S + N|x) + Vi¥p(N|x)

E(No|x) = VEp(S + N|x) + Vy’p(N | x)

Say yes if E(Yes | x) > E(No | x)

p(S+ N|x) S Vo — yres _ V(Correct|N)
p(N|x) ~ Ve, — Ve, V(Correct|S + N)

Say yes if

/

Posterior odds

Optimal Criterion

(S+N|x) S V(Correct | N)
p(N|x) — V(Correct|S+N)

Say yes if P

e if p(x|S+N) S p(N) V(Correct | N) B
p(x|N) — p(S+N)V(Correct|S + N)

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one:
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Stimulus

Bayes Optimal Criterion

Response
Yes No
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E(Yes|x) = Vi, p(S + N|x) + Vi“p(N|x)
E(No|x) = V§fpr(S +N|x)+ Vf\\,"’p(le)

Say yes if E(Yes | x) > E(No| x)

Apply Bayes’ Rule

Posterior Likelihood Prior

\P(S +N EP(X IS+ N)p(S+N) <

X
p( )\ Nuisance normalizing term

p(N|x)= M hence
p(x)

P(S+N|x) =(p(X|S+N)j(p(S+N)J
pNTX) | p(xIN) U p(N)

Posterior odds \
Prior odds

Likelihood ratio

Example applications of SDT

* Vision
« Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,

frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)
* Neurometric function/discrimination by neurons (internal
response = spike count)

From experimental measurements, assuming human is optimal,
can we determine the underlying distributions and criterion?
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Say “no” Say “yes”

Internal response



Internal response: probability of occurrence curves
Signal Detection Theory: discriminability (d')

High noise, E i
lots of overlap <
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Internal response
Low noise, , “‘separation”
not much overla, = T
P “width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions
Error rate is a function of d’
Criterion , . .
Signal Detection Theory: Criterion
Criterion d'=1
Distribution of internal I . Hits = 97.5%
responses when no Distribution of internal False alarms = 84%
responses when tumor
tumor
present
>
=
% Hits = 84%
= False alarms = 50%
[=]
S
-»
\ A 4 Hits = 50%
y “no” X” False alarms = 16%
Say “no Say “yes

Internal response

SDT: Gaussian case ROC (Receiver Operating Characteristic)
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d' = z[p(H)] + z[p(CR)] = z[p(H)] — z[p(FA)] . Plot anti-cumulatives:
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ROC (Receiver Operating Characteristic)

ROC (Receiver Operating Characteristic)
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[on board: Area under curve = %correct in a 2AFC task]
Decision/classification in multiple dimensions Linear Classifier

® Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean

Find unit vector w (“discriminant”) that best separates the distributions

e Fisher Linear Discriminant (FLD) - maximize d’ eo . classA ' pecision boundary
® Support Vector Machine (SVM) - maximize margin T < :, A o
e lteeny W
o Statistical: ¢ N 2ol s B
e ML/MAP/Bayes under a probabilistic model o ':,' ;'.',:.
® c.g.: Gaussian, identity covariance (same as Prototype) . e, e,

® c.g.: Gaussian, equal covariance (same as FLD)
® c.g.: Gaussian, general case (Quadratic Discriminator)

class A Decision
boundary

® Some Examples: ,
® Visual gender classification o A

® Neural population decoding histogram of projected values 0 - &

class B




Simplest linear discriminant: the Prototype Classifier
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Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {w,b} s.t. ¢;(w7 & —b) >m, Vi
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ML (or MAP) classifier for two Gaussians

Decision boundary is quadratic, with four possible geometries:
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[figure: Pagan et al. 2016]

Fisher Linear
Discriminant

(W7 Gy — iip)]° .
max (note: this is d’ squared!)
W [WTCyW + WICyi|

1
optimum: W = C~!(ii, — iip), where C = E(CA + Cp)

Reminder: Multi-D Gaussian densities
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A perceptual example: Gender identification

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
e[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]



Linear classifiers

SVM RVM Prot FLD

Four linear classifiers trained on subject data

Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]

Fisher Information

» Second-order expansion of the (expected) negative log likelihood:

1) = -E [62 1o§s;;(r|s)]

* Provides a bound on “precision” of unbiased estimators: 52 (s) > L
(the “Cramer-Rao” bound) — I(s)
* Perceptually, provides a bound on discriminability: D(s) < /I(5)

(Series et. al. 2009)

» Examples: with mean stimulus response f{s)

I(s) = [f'(s)]* /o
/(1) £ (s)

Gaussian case: p(7]s) ~ N(f(s),0?)

Poisson case:  p(r|s) ~ Poiss(f(s)) I(s) =

Model validation/testing

® Cross-validation: Subject responses [%
correct, reaction time, confidence] are
explained

- very well by SVM
- moderately well by RVM / FLD
- not so well by Prot

® Curse of dimensionality strongly limits this
result. A more direct test: Synthesize
optimally discriminable faces...
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Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, et. al; NIPS*04]

Example: Weber’s law
D(s) % < VI(3)

. 1 . . . .
Assuming I(s) 2 what internal representation explains this? Many!

multiplicative Gaussian
noise, with mean

additive Gaussian
noise, with mean

f(s) =log(s) + ¢

Poisson noise,
with mean

f(s) = llog(s) + ] fls)=s

f(s)

mean response, (s
mean response, f(s)
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stimulus, s stimulus, s stimulus, s

entirely due to
response variance

discrete representation,
depends on both mean
and variance

entirely due to
response mean

(Fechner, 1860)



