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Section 5a:

Statistical Decision Theory
+

Signal Detection Theory

Tumor, or not?

(357,221) = 328

Signal Detection Theory (binary estimation)

P(xIN) P(xS)

Measurement:

o
(noise)

«gn

Decision: (signal)

For equal-shape, unimodal, symmetric distributions,
the ML decision rule is a threshold function.
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More generally, decision rule can have multiple thresholds...

P(x1S)

Ny «“g
N '

“N”

Signal Detection Theory: Potential outcomes

Doctor responds Doctor responds
“no” ‘yes”

Tumor miss hit
present

Tumor correct false
absent reject alarm

For threshold t, cumulatives c()
c(t1S) = p(miss)

! 'S 1-¢(t1S) = p(hit)
decision c(tIN) = p(correct reject)
threshold 1-c(tIN) = p(false alarm)

MAP decision rule?

MAP solution maximizes proportion of correct
answers, taking prior probability into account.

ML

P(xIN)p(N)

Pp(xIS)p(S)

7

“N”

Compared to ML threshold, the MAP threshold moves
away from higher-probability option.
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Bayes decision rule?

Incorporate values for the four possible outcomes:

Payoff Matrix

Response

Yes No

. SN[ v v
=]
=)
£
n

N 74 7%

Bayes Optimal Criterion

Response
Yes No
(g S+N Vsyfrsv V;’fN
=]
£
n N vy Ve

E(Yes|x) = VI, p(S + N|x) + Vi< p(N | x)
E(No|x) = V;Ypr(S +N|x)+ V,/\\,"’p(le)

Say yes if E(Yes | x) > E(No | x)

Optimal Criterion

E(Yes|x) = Vi&,p(S + N|x) + Vy®p(N|x)

E(No|x) = Vé\pr(S +N|x)+ V}\\,]"p(le)

Say yes if E(Yes | x) > E(No | x)
p(S+N|x) S Ve — yles V(Correct | N)

Say yes if > =
7Y p(N|x) Vies, — Vo, V(Correct|S + N)

/

Posterior odds
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Apply Bayes’ Rule

Posterior Likelihood Prior

\p(S+N|X:‘P(XIS+N)p(S+N)/

X
p( )\ Nuisance normalizing term

p(N|x)= M hence
p(x)

P(S+N|x) :[p<x|S+N>j(p<S+N>j
pNTX) | p(xIN) U p(N)

Posterior odds \
Likelihood ratio Prior odds

Optimal Criterion

(S+N|x) S V(Correct | N)
p(N|x) — V(Correct|S+N)

Say yes if P

(x| S+N) S p(N) V(Correct|N) B
p(x|N) ~ p(S+N)V(Correct|S+N)

ie. if

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one:

Example applications of SDT

* Vision
« Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,

frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)
* Neurometric function/discrimination by neurons (internal
response = spike count)

From experimental measurements, assuming human is optimal,
can we determine the underlying distributions and criterion?

“criterion”

: /\ o
g

E

=

s

£

) /

A\ A
Say “no” Say “yes”

Internal response
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Signal Detection Theory: discriminability (d")

High noise,
lots of overlap

Low noise,
not much overlap

Internal response: probability of occurrence curves

Probability

Internal response

, _ “separation”

“width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions
Error rate is a function of d’
Criterion
Criterion
Distrihutionhuf internal Distribution of internal
responses when no responses when tumor
tumor
present
>
=
2
]
=
(=]
S
-» /
A\ A J
Y

Say “no” Say “yes”

Internal response
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Signal Detection Theory: Criterion

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

SDT: Gaussian case

Zp(CR)]  zlp(H)]

Probability

0 c d x
d' = z[p(H)] + z[p(CR)] = z[p(H)] — z[ p(FA)]

c= Z[p(CR)] G(x;10,0) = 1 e—(x—y)?/zzyZ
2o

(Fixo =1)

e-(a—d’)2 2

ﬁ_p(x=c|S+N)_
© plx=c|N)

ROC (Receiver Operating Characteristic)

Criterion #1

DN

lntern‘.%sponse
1

N

Probability

Plot anti-cumulatives:
1-c(tI N) vs. 1-c(t1S)
as threshold ¢ varies

Hits

False Alarms
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ROC (Receiver Operating Characteristic)

Criterion #2

Probability

\

Intern?l response
1

Hits

False Alarms

ROC (Receiver Operating Characteristic)

Criterion #3

2N

Probability

/
Internalfsponse

1

Hits

False Alarms

ROC (Receiver Operating Characteristic)

Criterion #4

AN

Probability

Internal response

1

Hits
.

False Alarms
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ROC (Receiver Operating Characteristic)

VAN

= 1 (lots of overlap) 3 (less overlap)

ROC curves

False alarms

[on board: Area under curve = %correct in a 24FC task]

Decision/classification in multiple dimensions

® Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean
® Fisher Linear Discriminant (FLD) - maximize d’
e Support Vector Machine (SVM) - maximize margin

e Statistical:
e ML/MAP/Bayes under a probabilistic model
® c.g.: Gaussian, identity covariance (same as Prototype)
® c.g.: Gaussian, equal covariance (same as FLD)
® c.g.: Gaussian, general case (Quadratic Discriminator)

e Some Examples:
® Visual gender classification
® Neural population decoding

Linear Classifier

Find unit vector w (“discriminant™) that best separates the distributions

’

* . class A ) Decision boundary
Se * e ’
“. ° [ .

® S :.&’ S

class A Decision class B
boundary

yANYAN

histogram of projected values W - &
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Simplest linear discriminant: the Prototype Classifier

’lf}:

fia— i
liia — iiBl|

Fisher Linear
Discriminant

Fisher

max [WT(WA B 73)]2

W [WTC + RTCyi|

(note: this is d” squared!)

1
optimum: W = C~1(%, — u’p), where C = E(CA + Cp)

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {w,b} s.t. c; ('@ —b) >m, Vi

XZ
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Reminder: Multi-D Gaussian densities

(@)= 5o =
P = 2o ’
! C

mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]

ML (or MAP) classifier for two Gaussians

Decision boundary is quadratic, with four possible geometries:

Simplest case:
equal covariances

Class1 3, Class 1
i - Class 2
< , = x
g ( o = g (—
2 Class 2 2
““I'Neuron 1 “I'Neuron 1
P 21
\ _Class 2 Class 1)
™ Class 2 s,/
~ t, w7 4
5 5| /
5 5 k,/
2| Class1 2 s, [on board]
Neuron 1 Neuron 1

[figure: Pagan et al. 2016]

A perceptual example: Gender identification

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
®] abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]
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Linear classifiers

SVM RVM Prot FLD

Four linear classifiers, trained on human data

Model validation/testing

® Cross-validation: Subject responses
[% correct, reaction time, confidence]
are explained

- very well by SVM

- moderately well by RVM / FLD
- not so well by Prot

® Do these decision “models”’make
testable predictions? Synthesize
optimally discriminable faces...

Subtract classifier Add classifier

>

SVM

Prot

FLD

[Wichmann, et. al; NIPS*04]
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SVM
_| RrwM
154 Proto
g FLD
Q
X
50 ==

0.25 0.5 1.0 20 40 8.0

Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, et. al; NIPS*04]

Fisher Information

« Second-order expansion of the (expected) negative log likelihood:

I(s)=-E [m’gf’(’“s)]

0s?
* Provides a bound on “precision” of unbiased estimators: ;2 ( s) > 1
(the “Cramér-Rao bound”) — I(s)
* Perceptually, provides a bound on discriminability: D(s) < VI(5)

(Series et. al. 2009)

» Examples: with mean stimulus response ,u(s)

Gaussian case:  p(7|s) ~ N (u(s), 02)

Poisson case:  p(r|s) ~ Poiss(u(s))  I(s) = [1'(s)]*/u(s)

Example: Weber’s law [Weber, 1834]

1 (discrimination thresholds
D(s) s proportional to stimulus strength)

. 1 . . S
Assuming  I(s) x S—that internal representation can explain this? Many!

additive Gaussian Poisson noise, multiplicative Gaussian
noise, with mean with mean noise, with mean
u(s) = log(s) + ¢ u(s) = [log(s) + ¢J? uis) = as
2 @ @
a k= &
2 g 2
8 8 3
&
stimulus, s stimulus, s stimulus, s
entirely due to discrete representation, entirely due to
response mean depends on both mean response variance
[Fechner, 1860] and variance
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S.S. Stevens. “To Honor
Fechner and Repeal His
Law: A power function, not
a log function, describes the
operating characteristic of a
sensory system” (1961)

Three examples with different
power-law mean response,
each consistent with Weber’s
law discriminability.

5(s) o 1/s

p(rls)

p(rls)

p(ls)

7

expansive: j(s) o s

linear: pi(s) s

" 03
compressive: /(s) o s

o(s) o pu(s)

stimulus, s

[Zhou, Duong & EPS, 2022]
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