Mathematical Tools for Neural and Cognitive Science

Fall semester, 2023

Section 1: Linear Algebra

Linear Algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier"

- Gilbert Strang, Linear Algebra and its Applications

... and this is even more true today than when the book was published!

Vector operations

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
 - definition/notation: sum of pairwise products
 - geometry: cosines, squared length, orthogonality test

[on board: geometry]

Inner product with a unit vector

- projection onto line
- distance to line/plane
- change of coordinates

[on board: geometry]

Vectors as "operators"

- "averager"
- "windowed averager"
- "smooth averager"
- "local differencer"
- "component selector"

[on board]

Linear System

S is a linear system if (and only if) it obeys the principle of superposition:

$$S(a\vec{x} + b\vec{y}) = aS(\vec{x}) + bS(\vec{y})$$

For any input vectors $\{\vec{x}, \vec{y}\}\$, and any scalars $\{a, b\}\$, the two diagrams at the right must produce the same response.

Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
 - conceptualize fundamental issues
 - **–** provide baseline performance
 - provide building blocks for more complex models

Implications of Linearity

Implications of Linearity

Implications of Linearity

Response to any input can be computed from responses to impulses This defines the operation of matrix multiplication

Matrix multiplication

Two interpretations of $M\vec{v}$ input perspective: output perspective: weighted sum of columns multiply System response

to first axis, \hat{e}_1

[details on board]

Rafetto's Pasta (est. 1906)

https://raffettospasta.com

Matrix multiplication

- two interpretations of $M\vec{v}$:
 - weighted sum of columns
 - inner products with rows
- transpose A^T , symmetric matrices $(A = A^T)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.

[details on board]

Cascaded linear systems => product of matrices

Matrix multiplication

- two interpretations of $M\vec{v}$:
 - "input perspective": weighted sum of columns
 - "output perspective": inner product with rows
- transpose A^T , symmetric matrices $(A = A^T)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.
- generally *not* commutative $(AB \neq BA)$, but note that $(AB)^T = B^TA^T$
- vectors as matrices: Inner products, Outer products

[details on board]

All matrices • square shape (dimensionality-preserving) • rows are orthogonal unit vectors • columns are orthogonal unit vectors • performs a rotation of the vector space (with possible axis inversion) • preserve vector lengths and angles (and thus, dot products) • inverse is transpose Diagonal matrices • arbitrary rectangular shape • all off-diagonal entries are zero • squeeze/stretch along standard axes • if non-square, creates/discards axes • inverse is diagonal, with inverse of non-zero diagonal entries of original

Singular Value Decomposition (SVD)

(Venn Diagram)

Any matrix M can be factorized as

 $M = U S V^T$

with U, V orthogonal, S diagonal

- geometry: "rotate, stretch, rotate"
- columns of V are basis for *input* coordinate system
- columns of *U* are basis for *output* coordinate system
- S rescales axes, and determines what "gets through"

[details on board]

SVD geometry (in 2D)

Apply M to four vectors (heads at colored points):

Singular Value Decomposition (SVD)

Any matrix M can be factorized as

$$M = U S V^T$$

with U, V orthogonal, S diagonal

- unique, up to permutations and sign flips
- sum of "outer products"
- nullspace and rangespace
- inverse and pseudo-inverse

[details on board]

