
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2022
Mathematical Tools for Neural and Cognitive Science

Homework 1

Due: 23 Sep 2022
(late homeworks penalized 10% per day)

Please: don’t wait until the day before the due date... start now! [Click here for submission
instructions]

Important! Unless we specify otherwise, do not use the [MATLAB Linear Algebra Library] and
np.linalg library or equivalent functions from other built-in libraries for this homework. This
includes functions norm and inv. You are welcome (and encouraged!) to write your own functions
to carry out these computations.

1. Inner product with a unit vector. Given unit vector û, and an arbitrary vector v⃗, write
(MATLAB or Python) functions for computing the following:

(a) A function named projection which takes as input a vector v and unit vector u, and
returns the component of v⃗ lying along the direction û.

(b) A function named ortho which takes as input a vector v and unit vector u, and returns
the component of v⃗ that is orthogonal (perpendicular) to û, and

(c) A function named distance which takes as input a vector v and unit vector u, which
returns the distance from v⃗ to the component that lies along direction û.

Verify that your code is working by testing it on random vectors û and v⃗ (generate these
using randn in MATLAB or np.random.randn in Pytho. Remember to re-scale û so that
it has unit length). First, do this visually with 2-dimensional vectors, by plotting û, v⃗, and
the two components described in (a) and (b). (hint: execute axis equal in MATLAB or
plt.axis(‘equal’) in Python to ensure that the horizontal and vertical axes have the same
units). Then test it numerically in higher dimensions (e.g., 4) by writing expressions to verify
each of the following, and executing them on a few randomly drawn vectors v⃗:

• the vector in (a) lies in the same (or opposite) direction as û.

• the vector in (a) is orthogonal to the vector in (b).

• the sum of the vectors in (a) and (b) is equal to v⃗.

• the sum of squared lengths of the vectors in (a) and (b) is equal to ||v⃗||2.

2. Testing for (non)linearity. There is no coding required for this part (though you are wel-
come to use code to help illustrate your thought process). Please create a separate text or
markdown cell for each subproblem.

Consider each of the systems below. We have a set of input-output pairs in the form of
input → output. For each system, determine whether the system could be a linear system. If
not, explain why the system is not a valid linear system. If yes, provide a matrix M that is
consistent with the examples provided, and state whether M is unique (i.e., the only matrix
that is consistent with the observations).

https://www.cns.nyu.edu/~eero/math-tools/Handouts/HomeworkSubmissionInstructions2022.pdf
https://www.cns.nyu.edu/~eero/math-tools/Handouts/HomeworkSubmissionInstructions2022.pdf
https://www.mathworks.com/help/matlab/linear-algebra.html?s_tid=CRUX_lftnav
https://numpy.org/doc/stable/reference/routines.linalg.html

2

(a) System 1:

0 −→ [1, -5]

(b) System 2:

[3, 2] −→ 15
[-2, 2] −→ 6

(c) System 3:
[2, 6] −→ [3, 7]
[1, -2] −→ [-1, 3]
[5, 0] −→ [1, 4]

(d) System 4:
[3, 1.5] −→ [-3, -6]
[-8, -4] −→ [8, 16]

3. Geometry of linear transformations
For this question, you may use svd and np.linalg.svd.

(a) Write a function plotVec2 that takes as an argument a matrix with 2 rows and n
columns, and plots each column vector from this matrix on 2-dimensional axes. It
should check that the matrix argument has two rows, signaling an error if not. Vectors
should be plotted as a line from the origin (0,0) to the vector position, using a circle
or other symbol to denote the “head” (see help for function ‘plot’). It should also draw
the x and y axes, extending from -1 to 1. The two axes should be equal size, so that
horizontal units are equal to vertical units (read the help for the function ’axis’). Test
this function by plotting three random vectors. (MATLAB) If you write these functions
as a separate file be sure to include it when submitting your code and as a page of your
output .PDF.

(b) Write a second function vecLenAngle that takes two vectors as arguments and returns
the length (magnitude, or Euclidean-norm, not dimensionality) of each vector, as well
as the angle (in radians) between them. Decide how you would like to handle cases
when one (or both) vectors have zero length. Print the output of this function from two
random vectors.

(c) Generate a random 2x2 matrix M , and decompose it using the SVD, M = USV T .
Now examine the action of this sequence of transformations on the two “standard basis”
vectors, {ê1, ê2}. Specifically, use vecLenAngle to examine the lengths and angle between
two basis vectors ên, the two vectors V T ên, the two vectors SV T ên, and the two vectors
USV T ên. Do these values change, and if so, after which transformation? Verify this is
consistent with their visual appearance by plotting each pair using plotVec2.

(d) Generate a data matrix P with 65 columns containing 2-dimensional unit-vectors ûn =
[cos(θn); sin(θn)], and θn = 2πn/64, n = 0, 1, . . . , 64. [Hint: Don’t use a for loop! Create
a vector containing the values of θn.] Plot a single blue curve through these points, and
a red star (asterisk) at the location of the first point. Consider and discuss the action

3

of the matrix M from the previous problem on this set of points. In particular, apply
the SVD transformations one at a time to the full set of points (again, think of a way to
do this without using a for loop!), plot each of the transformations, and describe what
geometric changes you see (and why).

4. A simple visual neuron. There is no coding required for this part. Please create a separate
text or markdown cell for each subproblem.

You are a biologist exploring a previously unexplored island in the South Pacific. You come
across a new species of salamander and decide to characterize how its visual system works.

You find a retinal neuron that responds only to the intensity of light at 5 different localized
regions on the retina - we can represent the light at these 5 regions as a (positive-valued)
vector v⃗ = [v1, v2, v3, v4, v5]. The output r of the retina is a weighted sum of the intensities
at each location; specifically, r = 6v1 + 8.2v2 + v3 + 3v4 + v5.

(a) Is this system linear? If so, express the response as a matrix multiplied by the input
intensity vector v. If not, explain why not.

(b) What unit-length stimulus vector (i.e., vector of light intensities) elicits the largest re-
sponse in this neuron? Write out your reasoning and explain how you know this is the
largest possible response. [hint: try to reason through what this looks like geometrically
in 2D! What kind of relationship must exist between r and the weights for the response
to be large?]

(c) What physically-realizable unit-length stimulus vector produces the smallest response in
this neuron? Explain your reasoning. [hint: try to reason through what this would look
like geometrically in 2D! What does it mean for a vector to be physically realizable?]

5. Gram-Schmidt. A classic method for iterative construction of an orthonormal basis is
known as Gram-Schmidt orthogonalization. First, one generates an arbitrary unit vector
(typically, by normalizing a vector created with randn or np.random.normal in Python).
Each subsequent basis vector is created by generating another arbitrary vector, subtracting
off the projections of that vector along each of the previously created basis vectors, and
normalizing the remaining vector. The output should be a matrix of random unit vectors all
of which are orthogonal to each of the other vectors in the matrix.

Write a function gramschmidt that takes a single argument, n, specifying the dimensionality
of the basis. It should then generate an n×nmatrix whose columns contain a set of orthogonal
normalized unit vectors. Try your function for n = 3, and plot the basis vectors (you can
use rotate3d in Matlab or see footnote1 in Python to interactively examine these). Check
your function numerically by calling it for an n much larger than 3 (e.g. 1000) and verifying
that the resulting matrix is orthonormal (hint: you should be able to do this without using
loops). Extra credit: make your function recursive – instead of using a for loop, have
the function call itself, each time adding a new column to the matrix of previously created
orthogonal columns. To do this, you’ll probably need to write two functions (a main function
that initializes the problem, and a helper function that is called with a matrix containing
the current set of orthogonal columns and adds a new column until the number of column

1Make sure you run from mpl toolkits.mplot3d import Axes3D and %matplotlib notebook at some
point. Then run fig = plt.figure(); ax = fig.add subplot(111, projection(‘3d’)); ax.plot(‘‘whatever

you want’’). Note that this does not work in Colab, and you need to have Jupyter notebook on your own computer
for interactive 3D plots.

4

equals the number of rows). (MATLAB) If you write this function as a separate file be sure
to include it when submitting your code and as a page of your output .PDF.

6. Null and Range spaces. Imagine you have a linear system characterized by matrix M ,
which takes as input a vector, v⃗, and outputs a vector, y⃗, such that y⃗ = Mv⃗. For this question,
you may use svd and np.linalg.svd.

(a) Explain in a few sentences what the null and range spaces of the matrix are.

(b) Imagine that a creature has a linear tactile system: it takes a vector input (of pressure
measurements) and produces a vector of neural responses. If the system has a non-zero
null space, what does this tell you about the creature’s perceptual capabilities?

(c) Load the file Hw1Q6 MtxExamples.mat into your Matlab world (use scipy.io.loadmat
in Python). You’ll find a set of matrices named mtxN, with N = 1, 2...5. For each matrix,
use the SVD to: (1) determine if there are non-trivial (i.e., non-zero) vectors in the
input space that the matrix maps to zero (i.e., determine if there’s a nullspace). If so,
write a Matlab or Python expression that generates a random example of such a vector,
and verify that the matrix maps it to the zero vector; (2) generate a random vector y
that lies in the range space of the matrix, and then verify that it’s in the range space
by finding an input vector, x, such that Mx = y. Please create a separate code cell for
each matrix.

