
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2022
Mathematical Tools for Neural and Cognitive Science

Homework 4

Due: 8 Nov 2022
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please don’t
procrastinate until the day before the due date... start now!

1. Bayesian inference of eye color. A male and female chimpanzee have blue and brown
eyes, respectively. The brown-eyed allele can be denoted as a capital B, whereas the blue-eyed
allele can be represented as a lowercase b. Assume a simple genetic model in which the gene
for brown eyes is always dominant (so that the trait of blue eyes can only arise from two
blue-eyed genes, but the trait of brown eyes can arise from two brown-eyed genes, or one of
each). Children get one allele from each parent. You can also assume: i) the probability of
the mother being BB is 50% and the probability of her being Bb is 50%; and ii) the a priori
probability that a child gets any one of the four gene configurations from the parents is 25%.
For each question, provide the math, and explain your reasoning.

(a) Suppose you observe that they have a single child with brown eyes. What is the proba-
bility that the female chimp has a blue-eyed gene?

(b) Suppose you observe that they have a second child with brown eyes. Now what is the
probability?

(c) Generalizing, suppose they have N children with brown eyes... express the probability,
as a function of N .

2. Sums of random variables. Consider a discrete distribution specified by a vector p of
length n whose elements provide the frequency of occurrence of each of the integers 1 . . . n.
(The values in p should be non-negative and sum to 1).

(a) Write a function samples = randp(p, num) that generates num samples from the PDF
specified by p. Test your function by choosing some arbitrary p of length 10, drawing
1,000 samples, plotting a histogram of how many times each value is sampled, and
comparing this to the frequencies predicted by p. Verify qualitatively that the answer
gets closer (converges) as you increase the number of samples (try 102, 104, 106, ...).

(b) Next, write a function psum(p, q) that, for two discrete PDFs p and q, returns a vector
encoding the PDF for the sum of a sample drawn from p and a sample drawn from q.
Hint: the size of the output vector must cover the full range of possible values when
summing the two variables.

Test your function on p = [1:6] / sum([1:6]) (a weighted die), and using repeated
calls to psum to compute the PDF predicted for a sum of four rolls of the die. Now
compare this PDF to a histogram of samples generated by summing four samples drawn
using randp. Again, verify that the histogram gets closer to the true distribution as you
increase the number of samples.
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3. Multi-dimensional Gaussians.

(a) Write a function samples = ndRandn(mean, cov, num) that generates a set of sam-
ples drawn from an N-dimensional Gaussian distribution with the specified mean (an
N-vector) and covariance (an NxN matrix). The parameter num should be optional
(defaulting to 1) and should specify the number of samples to return. The returned
value should be a matrix with num rows each containing a sample of N elements. (Hint:
use the MATLAB function randn to generate samples from an N-dimensional Gaus-
sian with zero mean and identity covariance matrix X, and then transform these to
achieve the desired mean and covariance. Recall that the covariance of Y = MX is
E(Y Y T ) = MCXMT where CX is the covariance of X.) For this, use mean µ = [4, 5]
with CY = [10,−4;−4, 5] to sample and scatterplot 1,000 points to verify your function
worked as intended.

(b) Now consider the marginal distribution of a generalized 2-D Gaussian with mean µ and
covariance C in which samples are projected onto a unit vector û to obtain a 1-D dis-
tribution. Write a mathematical expression for the mean and variance of this marginal
distribution as a function of û and check it for a set of 48 unit vectors spaced evenly
around the unit circle. For each of these, compare the mean and variance predicted from
your mathematical expression to the sample mean and variance estimated by projecting
your 1,000 samples from part (a) onto û. Stem plot the mathematically computed mean
and the sample mean (on the same plot), and also plot the mathematical variance and
the sample variance, both plotted as a function of the angle of û with the x-axis.

(c) Now scatterplot 1,000 new samples of a 2-dimensional Gaussian using the same µ and CY

from part (a). Measure the sample mean and covariance of your data points, comparing
to the values that you requested when calling the function. For each of the unit vectors
from (b), find the endpoint of that unit vector scaled by the standard deviation of the
data projected onto that unit vector. Plot a closed contour that connects all those
endpoints. Plot a second closed contour using the theoretical values using the results in
(b). Try this on three additional random data sets with different means and covariance
matrices. Does this contour capture the shape of the data?

(d) How would you, mathematically, compute the direction (unit vector) that maximizes
the variance of the marginal distribution? Compute this direction and verify that it is
consistent with your plot.

4. Analyzing and simulating experimental data. An international coffee conglomerate
recruits you to characterize the neuropsychology underlying their customers’ adoration of
pumpkin spice. You devise a blood-oxygen level dependent (BOLD) fMRI pilot experiment
in which you present one of two classes of odorants to an individual while monitoring the
activity of three key voxels located in the amygdala, a structure known to be associated
with emotional responses. The file experimentData.mat contains: a (N × 3) matrix data,
where each row is the BOLD response of the three voxels on a given trial relative to some
baseline; and a (N × 1) vector trialConds indicating the experimental condition of each
trial. Condition 1 includes trials in which you present an odorant selected randomly from a
library of possible control odorants, and condition 2 includes trials in which the trade-secret
pumpkin-spice odorant is presented.

(a) Before doing anything quantitative with your data, it is always good practice to visualize
it. First, determine how many trials of each condition were completed. Display this
information as a 2-bin histogram with each bin representing each of the two possible
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conditions, and their heights representing their respective trial counts. Next, plot a
3D scatter plot of the recorded responses, with each point color-coded according to its
associated condition (use the function scatter3 in Matlab (or see footnote1 for Python)
and be sure to label your axes). Describe your data qualitatively using this figure. Is
there a noticeable difference between the two conditions? What geometric shape are
these ‘response clouds’, and what distribution would you use to model them?

(b) Quantify the response statistics of each individual condition. Calculate the means of each
response cloud, as well as their respective covariance matrices. Compute the covariance
matrices of each response cloud using matrix multiplication (remember to center the
data first). Verify that your calculation is correct by comparing with the output given
by the cov function. How do the covariance matrices compare between condition 1 and
condition 2 (are they similar at all or wildly different)?

(c) Next, compute the SVD of each covariance matrix. Plot the three singular vectors
originating from the center of each response cloud and scale their amplitude by the
square root of the singular values. Relative to how similar the covariance matrices were
before computing their SVD, how do each condition’s respective set of singular values
compare? Describe what this tells us about the relationship between the two conditions
and, more fundamentally, the relationship between the three voxels across conditions.

(d) A powerful method to validate a model is by generating (i.e., simulating) new data
matching your quantitative description of the real data, and then comparing them with
real data. Create a function

simResponses = odorExperiment(numTrials1,numTrials2)

where numTrials1 and numTrials2 are the number of trials in a simulated experiment
for condition 1 and 2, respectively. simResponses is a (N × 3) matrix containing simu-
lated responses of each of your 3 voxels during N = numTrials1 + numTrials2 trials.
[Hint: use ndRandn from the previous problem.] Plot the simulated and real responses
in the same figure (use subplots if you wish) to compare the two. Is your simulated
response data a good characterization of the real amygdala voxel responses?

1Make sure you run from mpl toolkits.mplot3d import Axes3D and %matplotlib notebook at some
point. Then run fig = plt.figure(); ax = fig.add subplot(111, projection(‘3d’)); ax.plot(‘‘whatever

you want’’). Note that this does not work in Colab, and you need to have Jupyter notebook on your own computer
for interactive 3D plots.


