PSYCH-GA.2211/NEURL-GA.2201 — Fall 2022
Mathematical Tools for Neural and Cognitive Science

Homework 3

Due: 21 Oct 2022
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Do yourself a favor, and don’t wait
until the day before the due date... start now!

1. LSI system characterization. You are trying to experimentally characterize three auditory
neurons, in terms of their responses to sounds. For purposes of this problem, the responses of
these neurons are embodied in compiled matlab functions unknownSystemX.p with X=1, 2,
3. If you are using Python, import the unknown_systems module from the obfuscated Python

file.

Each takes an input column vector of length N = 64 whose elements represent sound

pressure over time. In Python the response of each is a column vector (of the same length)
representing the mean spike count over time. For each neuron,

(a)

“Kick the tires” by measuring the response to an impulse in the first position of an
input vector. Check that this impulse response is shift-invariant by comparing to the
response to an impulse at positions n = 2,4,8. Check that the response to a sum of
any two of these impulses is equal to the sum of their individual responses (i.e., whether
the system is linear). Also use different n to determine how the system handles inputs
near the boundary (i.e., whether the system does circular boundary-handling). Be sure
to describe your findings.

If the previous tests succeeded, examine the response of the system to sinusoids with
frequencies {27/N,4w/N,87/N,167/N}, and random phases, and check whether the
outputs are sinusoids of the same frequency (i.e., verify that the output vector lies
completely in the subspace containing all the sinusoids of that frequency). [Note: make
the input stimuli positive, by adding one to each sinusoid, and the responses should then
be positive (mean spike counts).]

If the previous tests succeeded, verify that the change in amplitude and phase from input
to output is predicted by the amplitude (abs) and phase (angle) of the corresponding
terms of the Fourier transform of the impulse response. If not, explain which property
(linearity, or shift-invariance, or both) seems to be missing from the system. If so, do
you think that the combination of all tests guarantees that the system is linear and
shift-invariant? What combination of tests would provide such a guarantee?

2. Neuron in visual cortex. The response properties of neurons in primary visual cortex
(area V1) are often described using linear filters. We’ll examine a one-dimensional cross-
section of the most common choice, known as a “Gabor filter” (named after Electrical Engi-
neer /Physicist Denis Gabor, who developed it in 1946 for use in signal processing).

(a)

Create a one-dimensional linear filter that is a product of a Gaussian and a sinusoid,
exp (—%) cos(wn), with parameters ¢ = 3.5 and w = 27 % 10/64 samples. The filter
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should contain 31 samples, and the Gaussian should be centered on the middle (16th)
sample. Plot the filter to verify that it looks like what you’d expect. Plot the amplitude
of the Fourier transform of this filter, sampled at 64 locations (MATLAB’s £ft function
takes an optional additional argument). What kind of filter is this? Why does it have
this shape, and how is the shape related to the choice of parameters (o, w)? Specifically,
how does the Fourier amplitude change if you alter each of these parameters?

(b) If you were to convolve this filter with sinusoids of different frequencies, which of them
would produce a response with the largest amplitude? Obtain this answer by reasoning
about the equation defining the filter (above), and also by finding the maximum of the
computed Fourier amplitudes (using the max function), and verify that the answers are
the same. Compute the period of this sinusoid, measured in units of sample spacing
(hint: this is the inverse of its frequency, in cycles/sample), and verify by eye that this is
roughly matched to the oscillations in the graph of the filter itself. Which two sinusoids
would produce responses with about 25% of this maximal amplitude?

(c) Create three unit-amplitude 64-sample sinusoidal signals at the three frequencies (low,
mid, high) that you found in part (b). Convolve the filter with each, and verify that
the amplitude of the response is approximately consistent with the answers you gave in
part (b). (Hint: to estimate amplitude, you’ll either need to project the response onto
sine and cosine of the appropriate frequency, or compute the DFT of the response and
measure the amplitude at the appropriate frequency.)

(d) Verify the convolution theorem. Apply the Fourier transform to each of your three
stimuli. Multiply each by the Fourier transform of the Gabor filter. Inverse Fourier
transform the results and verify that the imaginary part is zero, and the real part is
equal to the result you obtain from the convolution.

3. Deconvolution of the Haemodynamic Response. Neuronal activity causes local changes
in deoxyhemoglobin concentration in the blood, which can be measured using magnetic res-
onance imaging (MRI). One drawback of this is that the haemodynamic response is both
delayed and slower than the underlying neural responses. We can model the delay and spread
of the measurements relative to the neural signals using a linear shift-invariant system:

r(n) =Y _x(n—k)h(k), (1)

k

where z(n) is an input signal delivered over time (for example, a sequence of light intensities),
h(k) is the haemodynamic response to a single light flash at time & = 0 (i.e., the impulse
response of the MRI measurement), and r(n) is the MRI response to the full input signal.

In the file hrfDeconv.mat, you will find a response vector r and an input vector x containing
a sequence of impulses (indicating flashes of light). Your goal is to estimate the HRF, h, from
the data. Each of these signals are sampled at 1 Hz. Plot vectors r and x versus time to get
a sense for the data. Use the stem command (or plt.stem in Python) for z, and label the
X-axis.

(a) Convolution is linear, and thus we can re-write the equation above as a matrix multi-
plication, » = Xh, where h is a vector of length M, and X is an [N + M — 1] x M
matrix (N is the length of the input x). Write a matlab function createConvMat, that
takes as arguments an input vector x and M (the dimensionality of h) and generates
a matrix X such that the response r = Xh is as defined in Eq. (1) for any h. Verify
that the matrix generated by your function produces the same response as MatLab’s
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conv function when applied to a few random h vectors of length M = 15. Visualize the
matrix X as an image (evaluate imagesc(X) in MATLAB or plt.imshow in Python),
and describe its structure.

Now, given the X generated by your function for M = 15, solve for h by formulating a
least-squares regression problem:

hopt = arg m}zn || — Xh||?

Plot hgy as a function of time (label your x-axis, including units). How would you
describe it? How long does it last?

It’s often easier to understand an LSI system by viewing it in the frequency domain.
Plot the power-spectrum of the HRF (i.e. |F(h)|?, where F(h) is the Fourier transform
of the HRF). Plot this with the zero frequency (DC) in the middle, and label the x axis,
in Hz. Based on this plot, what kind of filter is the HRF? Specifically, which frequencies
does it allow to pass, and which does it block?

Use the convolution theorem to now find h,y by working in the fourier domain. You
will need to use the matlab functions fft and ifft. Remember to be careful about how
many samples you choose to have in your fft. Based on the operations you have done,
what can you say about when this method will fail? On the same graph, plot the HRF
impulse response you recovered from parts (c) and (d).

4. Sampling and aliasing. Load the file myMeasurements.mat into matlab. It contains a
vector, sig, containing voltage values measured from an EEG electrode, sampled at 120Hz.
Plot sig as a function of vector time (time, in seconds), using the flag 'ko-’ in matlab’s plot
command so you can see the samples.

(a)

This signal is only a small portion of the full data, and you don’t want to store all those
values. Create a subsampled version of the signal, which contains every fourth value.
Plot this, against the corresponding entries of the time vector, on top of the original data
(use matlab’s hold function, and plot with flag 'r*-’). How does this reduced version of
the data look, compared to the original? Does it provide a good summary of the original
measurements? Is the subsampling operation linear? Shift-invariant? Explain.

Examine your EEG result in the frequency domain. First plot the magnitude (amplitude)
of the Fourier transform of the original signal, over the range [-N/2,(N/2) — 1] (use
fftshift). By convention, the ”"Delta” band corresponds to frequencies less than 4Hz,
”Theta” band is 4-7Hz, ” Alpha” band 8-15Hz, and ”Beta” is 16-31Hz. For these data,
which band shows the strongest signal? Is there any power in frequencies outside of
these known bands, and if so can you explain the origin of this part of the signal?

Write a function signalPart = bandWiseReconstruct(bandName) that reconstructs
the signal (and plots the reconstruction) using only sinusoids from the band correspond-
ing to the string bandName (i.e. for bandName = ’Delta’ the reconstruction should be
a sum of sinusoids with frequencies from 0-4Hz).

Plot the Fourier magnitude for signals downsampled by factors of 2, 3, and 4, after
upsampling them back to full size (i.e., make a full-size signal filled with zeros, and set
every kth sample equal to one of the subsampled values, for subsampling by factor k).
What is the relationship between these plots and the original frequency plot. What has
happened to the frequency components of the original signal? Does the strongest signal
band change?



