
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2022
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 11 Oct 2022
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Please: don’t wait until the day before
the due date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment (or use
scipy.io.loadmat for Python). This file contains matrices and vectors related to the color
matching experiment presented in class. In particular, the variable P is an N × 3 matrix
containing wavelength spectra for three “primary” lights, that could be used in a color-
matching experiment. For these problems N = 31, corresponding to samples of the visible
wavelength spectrum from 400 nm to 700 nm in increments of 10 nm.

The function humanColorMatcher.p simulates a normal human observer in a color matching
experiment. For Python, download the file and use from trichromacy import human color matcher.
The input variable light should contain the wavelength spectrum of a test light (a 31-
dimensional column vector). The input variable primaries should contain the wavelength
spectra of a set of primary lights (typically, a 31×3 matrix, as for matrix P described above).
The function returns a 3-vector containing the observer’s “knob settings” - the intensities
of each of the primaries that, when mixed together, appear identical to the test light. The
function can also be called with more than one test light (by passing a matrix whose columns
contain 31-dimensional test lights), in which case it returns a matrix whose columns are the
knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random
column vector with 31 positive components (use rand in MATLAB or np.random.rand
in Python). Use humanColorMatcher to “run an experiment”, asking the “human” to
set the intensities of the three primaries in P to match the appearance of the test light.
Compute the 31-dimensional wavelength spectrum of this combination of primaries, plot
it together with the original light spectrum, and explain why the two spectra are so
different, even though they appear the same to the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional lights
to 3-dimensional knob settings. Specifically, run a set of experiments to estimate the
contents of a 3 × 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(c) Your colleague down the hall, Dr. Evoprimary, proudly tells you about a new color-
matching configuration using primaries derived from pigments that were most prevalent
in the environment of our evolutionary ancestors. You respond that this is a beautiful
concept, but seems unlikely to offer new insights into human trichromacy, since you can
precisely predict the color matches that will be obtained with these new primaries. Dr.
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E allows you to measure the wavelength spectra of the new primaries (stored in variable
eP). Derive (write math, and explain logic) an expression for the color-matching matrix
(3x31, maps a light to 3 knob settings) that predicts matches that would be obtained in
Dr E’s lab. Compute this matrix, making use of humanColorMatcher.p with your own
primaries, P. Check, for a random test light, that the predicted mixture of eP primaries
matches (produces the same knob settings when tested with your primaries, P). If it does
not, explain why.

(d) The variable Phosphors contains the emission spectra of three standard color display
phosphors (from an old-fashioned cathode ray tube!). Suppose you wanted to make the
background color of this screen match the appearance of an arbitrary test light. Write
a matlab expression to compute the three phosphor intensities that would achieve this.
Verify that this particular mixture of phosphor spectra satisfies the “matching” criterion
(i.e., that a human would see this spectral mixture as being identical to the test light).

2. 2D polynomial regression. Load the file regress2.mat into your MATLAB environment.
The matrix D contains 3 columns of data, which we’ll refer to as X, Y , and Z respectively.

(a) plot Z as a function of X and Y using surf [note: you’ll need to reshape the three
column vectors into square matrices]. Execute the command rotate3d on, and use the
mouse to rotate the 3D space and view the data at different angles.

(b) Fit the Z values with polynomials in X and Y , up to order 3: p0(X,Y ) = β0, p1(X,Y ) =
β0 + β1X + β2Y , p2(X,Y ) = β0 + β1X + β2Y + β3X

2 + β4XY + β5Y
2, etc. Compute

this using svd and basic linear algebra manipulations that you’ve learned in class!

(c) For each of the polynomials, (a) plot the fitted surface (use surf) and data points
(use plot3) in the same figure, and rotate it around to convince yourself that the fit
is reasonable. (b) compute the error for each element of Z, plot a histogram of these
values, and compute the mean of the squared errors. How does the error behave as you
increase the order of the polynomial? Which polynomial do you think gives the “best”
fit? Explain.

3. Constrained Least Squares Optimization. Load the file constrainedLS.mat intoMAT-
LAB or Jupyter notebook. This contains an N × 2 data matrix, data, whose columns corre-
spond to horizontal and vertical coordinates of a set of 2D data points, d⃗n. It also contains
a 2-vector w. Consider a constrained optimization problem:

min
β⃗

∑
n

(
β⃗T d⃗n

)2
, s.t. β⃗T w⃗ = 1.

There is a family of possible vectors β⃗ that satisfy the constraint β⃗T w⃗ = 1. Geometrically,
any β⃗ whose arrow-tip lies on a specific line perpendicular to w⃗ will satisfy the constraint.
The perpendicular distance of this constraint line from the origin will be 1/||w⃗|| from the
origin (think about the dot product, draw the vector w⃗ and the constraint line to prove this
to yourself).

(a) Rewrite the optimization problem in matrix form. Then rewrite the problem in terms of
a new optimization variable, β̃ (i.e. ’beta tilde’, a linear transformation of β⃗), such that
the quantity to be minimized is now ||β̃||2. Note: you must also rewrite the constraint
in terms of β̃.
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(b) The transformed problem is one that you should be able to solve. In particular, you
must find the shortest vector β̃ that lies on the constraint line. Compute the solution
for β̃, and plot the solution vector, the constraint line and the transformed data points.

(c) Transform the solution back into the original space (i.e., solve for β⃗). Plot β⃗, the original
constraint line, and the original data points. Is the optimal vector β⃗ perpendicular to
the constraint line? On the same graph, plot the total least squares solution (i.e., the
vector that minimizes the same objective function, but that is constrained to be a unit
vector). Are the two solutions the same?

4. Principal components. Load the file PCA.mat into your MATLAB environment. You’ll
find a matrix M containing responses of a population of 14 neurons, under 150 different
experimental conditions (each column contains the estimated firing rate of one neuron under
each of the conditions). We cannot directly visualize data of this many dimensions, but we
can use linear algebra to project them into a lower dimensional space.

(a) Compute the principal components of the 14-dimensional population responses. First,
center the data by subtracting the mean responsemean(M) from every row of the matrix
(hint: you might find the function repmat helpful). Call this re-centered data matrix
M̃ . Then compute the eigenvectors and eigenvalues of M̃T M̃ (alternatively, you can
compute the singular values of M̃). Plot the eigenvalues (or singular values). What do
you think is the “true” dimensionality of the responses?

(b) Project the data in M̃ onto the first principal component (i.e., the eigenvector corre-
sponding to the maximal eigenvalue). Plot a histogram (using hist) of these values.
Verify that the sum of squares of these values is equal to the first eigenvalue λ1. What
proportion of the total variability of the data (sum of squared lengths of all data vectors,
which is just the sum of squares of all entries of M̃) does this component account for?

(c) Show a scatter plot of the data projected onto the first two principal components (that
is, plot the inner product of the data with the first component versus the inner product
with the second component). You can use plot (with circular plot symbols and no
connecting lines), or use scatter. Use axis(’equal’) to set the two axes to use equal
scales. Show that the sum of the squared lengths of these projected vectors is equal to
λ1 + λ2. What proportion of the total variability of the data do these two components
account for?

(d) It appears that much of the response in this 14-neuron population can be explained in
terms of these two components. Now we’d like to interpret this result back in the space
of the original responses. Plot the two eigenvectors that you computed in the previous
answer, on a single graph. What combinations of conditions do each of them respond
to?


