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Statistical Decision Theory
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Signal Detection Theory
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Tumor, or not?
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Signal Detection Theory (binary estimation)
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For equal-shape, unimodal, symmetric distributions,
the ML decision rule is a threshold function.




More generally, decision rule can have multiple thresholds. ..
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Signal Detection Theory: Potential outcomes

Doctor responds Doctor responds

“no” “yes”
Tumor miss hit
present
Tumor correct false
absent reject alarm
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For threshold t, cumulatives ¢()
c(t1S) = p(miss)

! X 1-¢(t1S) = p(hit)
decision c(tIN) = p(correct reject)
threshold 1-c(tIN) = p(false alarm)

MAP decision rule?

MAP solution maximizes proportion of correct
answers, taking prior probability into account.

ML
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Compared to ML threshold, the MAP threshold moves
away from higher-probability option.




Bayes decision rule?

Incorporate values for the four possible outcomes:

Payoff Matrix
Response
Yes No
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Bayes Optimal Criterion

Response
Yes No
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E(Yes |x) = VY%, p(S + N|x) + V¥4 p(N | x)

+

E(No|x) = V¥, p(S + N|x) + VN°p(N | x)
Say yes if E(Yes | x) > E(No|x)

Optimal Criterion

E(Yes|x) = Vi p(S + N|x) + V¥ p(N|x)

E(No|x) = Vi p(S + N|x) + Vy°p(N | x)

Say yes if E(Yes | x) > E(No | x)
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Say yes if
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Posterior odds

p(N|x) = Ve, — Ve, V(Correct|S + N)




Apply Bayes’ Rule

Posterior Likelihood Prior
DS +N|X)= p(x| S+pl(\l)3;>(8 +N)

“~—— Nuisance normalizing term

p(x | N)p(N)
p(x)

p(N| x)= , hence

p(S+N|x)z(p<x|S+N>][p<S+N)j
pNTx) | p(xIN) L p(N)

Posterior odds / \

Likelihood ratio Prior odds

Optimal Criterion

(S+N|x) S V(Correct | N)
p(N|x) — V(Correct|S+N)

Say yes if p

e if p(x|S+N)> p(N) V(Correct | N) iy
o p(x|N) ~ p(S+N)V(Correct|S + N)

Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one:

Example applications of SDT

« Vision
« Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,
frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)
 Neurometric function/discrimination by neurons (internal
response = spike count)

From experimental measurements, assuming human is optimal,
can we determine the underlying distributions and criterion?
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Signal Detection Theory: discriminability (d')

High noise,
lots of overlap

Low noise,
not much overlap

Internal response: probability of occurrence curves

Probability

Internal response

, _ “separation”
“width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions
Error rate is a function of d’
Criterion
Criterion
Distribution of internal Distribution of internal
responses when no responses when tumor
tumor
present
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Signal Detection Theory: Criterion

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

SDT: Gaussian case
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b atl \/EG
— —(c=d’)*/2
ﬁzp(x—c|S+N)=e (Fixo = 1)

px=c|N) e

ROC (Receiver Operating Characteristic)

Criterion #1
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Plot anti-cumulatives:
1-c(tIN) vs. 1-c(t1S)
as threshold ¢ varies

Hits

False Alarms




ROC (Receiver Operating Characteristic)

Criterion #2

Probability
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ROC (Receiver Operating Characteristic)

Criterion #3
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Internal response
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ROC (Receiver Operating Characteristic)

Criterion #4
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ROC (Receiver Operating Characteristic)

VAN

(lots of overlap) (less overlap)

ROC curves

False alarms

[on board: Area under curve = %correct in a 2AFC task]

Decision/classification in multiple dimensions

e Data-driven linear classifiers:
® Prototype Classifier - minimize distance to class mean
e Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin

e Statistical:

ML/MAP/Bayes under a probabilistic model

e.g.: Gaussian, identity covariance (same as Prototype)
e.g.: Gaussian, equal covariance (same as FLD)

e.g.: Gaussian, general case (Quadratic Discriminator)

e Some Examples:
e Visual gender classification
e Neural population decoding

Linear Classifier

Find unit vector w (“discriminant”) that best separates the distributions

class A Decision
boundary

VA YAN

histogram of projected values W - &

class B




Simplest linear discriminant: the Prototype Classifier
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Fisher Linear
Discriminant

Fisher

(W7 (i — 7y

max (note: this is d” squared!)

W [WTCAW + WICy|

1
optimum: W = C~!(%’, — u’p), where C = E(CA + Cp)

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

Maximize the “margin” (gap between data sets):

find largest m, and {u,b} s.t. c;(@w7Z; —b) > m,
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Reminder: Multi-D Gaussian densities
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cov: [1.0-0.3;
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ML (or MAP) classifier for two Gaussians

Decision boundary is quadratic, with four possible geometries:
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[figure: Pagan et al. 2016]

A perceptual example: Gender identification

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
e[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]




Linear classifiers

SVM RVM Prot FLD

Four linear classifiers trained on subject data

Model validation/testing

® Cross-validation: Subject responses [%
correct, reaction time, confidence] are
explained

- very well by SVM

- moderately well by RVM / FLD
- not so well by Prot

® Curse of dimensionality strongly limits this
result. A more direct test: Synthesize
optimally discriminable faces...

) Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]
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[Wichmann, et. al; NIPS*04]

Fisher Information
* Second-order expansion of the (expected) negative log likelihood:

I(s) = ~E [azk’agsi“"s)]

* Provides a bound on “precision” of unbiased estimators: o2 (s) > i
(the “Cramer-Rao” bound) — I(s)
« Perceptually, provides a bound on discriminability: D(s) < m

(Series et. al. 2009)

» Examples: with mean stimulus response f(s)

Gaussian case: p(r|s) ~ N(f(s), 02) I(s) = [f/(S)]z/UQ
Poisson case:  p(r|s) ~ Poiss(f(s)) I(s) = [f/(S)F/f(S)

Example: Weber’s law
D(s) % < VI

. 1 . . . .
Assuming I(s) o« 2 what internal representation explains this? Many!

adqitive QauSSian Poisson noise, multiplicative Gaussian
noise, with mean with mean noise, with mean
f(s) =log(s) +c f(s) = llog(s) + J? fls)=s

i(s)

mean response, f(s)
mean response, f(s)

p(ils), with mean

stimulus, s stimulus, s stimulus, s

entirely due to discrete representation, entirely due to
response mean depends on both mean response variance

(Fechner, 1860) and variance




