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Fall semester, 2022

Section 4:
Summary Statistics & Probability

Statistics is the science of learning from experience, especially ex-
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques -become the analytic methods of choice
in biomedical science, psychology, education, economics, communi-
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as-
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick-
ing out non-existent patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a noisy background,
and also provides strict checks against the overinterpretation of
random patterns.

[Efron & Tibshirani, 1998]

Historical context

¢ 1600°s: Early notions of data summary/averaging

¢ 1700’s: Bayesian prob/statistics (Bayes, Laplace)

1920’s: Frequentist statistics for science (e.g., Fisher)

* 1940’s: Statistical signal analysis and communication,
estimation/decision theory (e.g., Shannon, Wiener, etc)

* 1950’s: Return of Bayesian statistics (e.g., Jeffreys, Wald,
Savage, Jaynes...)

* 1970’s: Computation, optimization, simulation (e.g,. Tukey)

* 2000’s: Machine learning (statistical inference with
large-scale computing + lots of data)

* Also (since 1950’s): statistical neural/cognitive models!




Statistics as summary description

0.1, 45, -23, 08, -1.1, 32, ...

“The purpose of statistics is to replace a quantity of data
by relatively few quantities which shall ... contain as much
as possible, ideally the whole, of the relevant information
contained in the original data”

- R.A. Fisher, 1934

Descriptive statistics

Data “Dispersion”

A

“Central tendency”

Descriptive statistics: average/variance

* Often use average & variance for central tendency & dispersion
* Sample average minimizes squared error (regression!):
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Descriptive statistics: alternatives

More generally, define dispersion in terms of

the “L, norm”:
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Different values of p lead to different measures of
central tendency:
* p=1 :median
* p — 0 :mode (location of maximum)

* p — oo : midpoint of range

Descriptive statistics: Multi-D
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Data points: {dn} nell..N], in2-D: d,= [y"]

As in 1D: define central tendency as vector that minimizes the
sum of squared distances to all data points:

d=argmin Y’ ||, ~ <
n

= arg min Z (X, —c)* + (O, — cy)2 (in 2-D)
€y "
1 N . -
32 7= ]
N y
n=1

Descriptive statistics: Multi-D

Data points: {Zn} née[l...N]

Sample mean (average):
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Affine transformations

If l;n =M (Cfn — Ei) (translate, then rotate-stretch-rotate)
then b= M (d—a)

Cy=MCyM T
Standard case: “re-center” and “normalize” the data:
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Correlation

Y (normalized)

3 -2 -1 0 1 2 3
X (normalized)

Correlation (r) captures dependency
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... but not slope!




Regression (revisited)
y=pT+¢€
Optimal regression line slope:
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Probability: an abstract mathematical
framework for describing random quantities, or
stochastic models of the world

Statistics: use of probability to summarize,
analyze, and interpret data. Fundamental to
all experimental science.
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Univariate Probability (outline)

samples

expected value, moments

distributions: discrete and continuous

transformations: affine, monotonic nonlinear

cumulative distributions. Quantiles, drawing

Frequentist view of probability: limit of infinite data

) probability
data —  histogram distribution
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Probability distributions

Discrete random variable
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Example distributions

a not-quite-fair coin roll of a fair die sum of rolls of
(Bernoulli) (uniform) two fair dice
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clicks of a Geiger counter, horizontal velocity of gas
in a fixed time interval ... and, time between clicks molecules exiting a fan
(Poisson) (exponential) (Gaussian)
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[Figure: Sean Owen, Cloudera Engineering]

Expected value (for a discrete random variable)

K
po =E(z) = xp P(ax)
k=1

a weighted sum over the discrete values

fha

K
More generally: E (f(x)) = Z f(xk)P(mk) (sum over values of R.V.)

Sample average, an estimate of the expected value:

N
= 1
E (f(:v)) ~ f(x) = N Z f((L',,L) (sum over data samples)

n=1

Sample average converges to expected value as one gathers more data...




A note on notation

¢ We have, and will continue to use the notation for a “sample
mean” (X) and a “sample standard deviation” (s) or variance

(s?).

¢ Statistics makes a distinction between these sample values
and the corresponding “population” values of mean (x) and
variance (62).

Expected value (continuous random variable)

probability
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Expected value (continuous)

E(z) = /x p(x) dv [“mean”, ]

E(z?) = / 2?p(z) dx [“second moment”, m:]

E (@~ 1) = [(@ - ) pla) da [“variance”, o°]
= /me(x) dx — pi? [m2 minus u*]

E(f(x)) = /f(x) p(z) dx [“expected value of 1]

Note: expectation is an inner product, and thus /inear, so:

E(af(z) +bg(z)) = aE (f(z)) + bE (g(x))




Transformations of scalar random variables

Y=aX+b “affine” (linear plus constant)

Analogous to sample mean/covariance:

uy=EXY)=aEX)+b=auy+b
2

oy =E <(Y—/ly)2) =E ((aX— ayx)2> = a’c}

1 y—>b
Full distribution: ~ py(y) = o Px

Y=g(X)

(assume g is “monotonic” - derivative > 0)

Remake this slide:

consistent notation with prev slide
- plot p(Y) twith vertical axis o left
- make shaded areas a bit narrower (small bi
- make shaded areas same size in p(x) p(y).
illustratina conservation of mas

P(y) f(x)

P(X)/
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Confidence intervals

PDF CDF
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Drawing samples - discrete
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Drawing samples - continuous
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Drawing samples - continuous

1) Draw
uniform
sample

2) Transform
using the
inverse
cumulative
distribution

100

function
150

3) This gives
a sample
from p(x) !

50

Multi-variate probability (outline)

¢ Joint distributions

* Marginals (integrating)

* Conditionals (slicing)

* Bayes’ rule (inverse probability)

» Statistical independence (separability)

¢ Mean/Covariance

e Linear transformations

Joint and conditional probability - discrete
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Conditional probability

Neither A nor B

p(A| B) = probability of 4 given that B is asserted to be true =

p(A& B)
p(B)

Joint and conditional probability - discrete
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P(Ace)
P(Heart)

P(Ace & Heart)
P(Ace | Heart)
P(not Jack of Diamonds)
P(Ace | not Jack of Diamonds)

“Independence”

Joint distribution (continuous)
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Marginal distribution
150

p(z,y)
5%0 0|
Ellllial
p(z) = / p(z,y)dy Eooojz

%0 100 150
X

Conditional distribution

p(z,y) p(xly = 90)

50 100 150
X

Conditional distribution

150,

> 100

plaly = 90)

50 100 150

5%0 100 150

p(z|ly = 90) = p(z,y = 90) //p(aa y = 90)dx

@D
More generally:
\ \

p('ﬂy) = p(m, y)/p(y) slice joint distribution normalize (by marginal)




Bayes’ Rule

LII. An Effay towards filving a Problem in
the Doétrine of Chances. By the late Rev.
My. Bayes, F. R.S. communicated by Mr.
Price, in a Letter to John Canton, A. M.
F.R.S.

Dear Sir,

Read Dec. 23, J Now fend you an effay which I have

1763 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(zly) = p(ylz) p(x)/p(y)

(a direct consequence of the definition of conditional probability)

Bayes’ Rule

A&B

p(A| B) = probability of 4 given that B is asserted to be true = %
P
P(A& B)= p(B)p(A4|B)
=p(A)p(B|A)
P(B|A)p(4)
A|B)=——"""=-"
= p(4|B) »(B)
Conditional vs. marginal
150 0.035
0.03 P(x|Y=120)
IL 0.02
100 ?foo 015
& 001 PO)
0.005
%o 100 150
5?‘)0 150 X

In general, the marginals for different Y values differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?




Statistical independence

Random variables X and Y are statistically
independent if (and only if): >

p(x,»)=p(x)p(y) Vx,y

80 90 100 110 120
x

(note: for discrete distributions, this is an outer product!)

Independence implies that all conditionals are equal to the
corresponding marginal:

p(x|y)=px,y)/ p(y)=px) Vxy

Mean, covariance, affine transformations
ForRV. X, @, =E(X), C,=E ((¥ - g)(x - w7

ForRV.y =M(X - @),
analogous to results for sample mean/covariance:

w,=E(M(X -a))
=M (E(X)-a))
=M (7, - a)

C, = E((M(T - B)YMT — 7))
= ME((X = W) = @) ) M"
=MCM"

Special case: Sum of two RVs

Let Z=X+Y or Z=TT[§]

Hz = Hx + py
0% = 0)2(+20XY+0)2,

Special case: if X and Y are independent, then:
E(XY) = E(X)E(Y) and thus oyy =0

2 _ 2 2
0; = oy + oy

p,(z) is the convolution of p,(x) and pPy(¥)

[on board]




Gaussian (a.k.a. “Normal”) densities

One-dimensional:

( ) 1 _ <m—;§>2
Xr) = e 20
b V2mwo?
m

Alt. notation: 2 ~ N (p1, 0%)

Multi-dimensional:

P S R CTE

(2m)N|C]

mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]

Gaussian properties
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* joint density of indep Gaussian RVs is elliptical [easy]

¢ conditionals of a Gaussian are Gaussian [casy]

» marginals of a Gaussian are Gaussian

* product of two Gaussian dists is Gaussian [easy]

* sum of independent Gaussian RVs is Gaussian

* the most random (max entropy) density of given variance

« central limit theorem: sum of many indep. RVs is Gaussian  [hard]

let P=C~! (the “precision” matrix)
p(z1lTe = a) o e~ 3[Pri(@i—p)* +2Pr2 (21 —pun) (a—p2)+...]

_1

= e 2
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: . _ Py
Gaussian, with:  y = — P—(a = Hy)
11

9 1
Conditional: - Pfll
WHHHHIHL
Marginal p(z1) = /p(f) dxs [on board]
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Generalized marginals of a Gaussian

L~ N(fiz; Cs)

=0Tz

p(z) is Gaussian, with:
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Correlation and regression

100 TLS regression fit
(largest eigenvector)
50
% \_ Least-sguares
° regression fit
2
I
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2
S « .
-50 Regression
to the mean”
-100
-100 -50 0 50 100
mother's height
Francis Galton (1886). "Regression towards mediocrity in hereditary stature"
Correlation and regression
100 TLS regression
(largest eigenvector)
50
\_ Least-squares
P regression
=
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.50 “True” ability
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test result 1 T1 T2




Correlation implies dependency

-0.8 -1

-0.4

S o ow w

... but not slope

1 1 1 -1 -1 -1

N

Correlation between variables does not uniquely indicate
the shape of their joint distribution

[

* Anscombe’s Quartet
Each dataset has the same summary statistics (mean, standard deviation,
correlation), and the datasets are clearly different, and visually distinct.

More extreme
examples !
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Distribution of 1 1

angles of pairs of s 2D 0 6D
random unit o 0
0.4 0.4
vectors
0 n ] n
0.4 1.
06 3D 10D
p(0) o sin() V=2 o
0.5
0.2]
0 n 0 [
0.8
0 4D 15) 18D
0.4 1
0.2] 0.5]
0 n 0 b

Lack of ' 2 N=16

N=3
correlation is ! 0
favored in N>3 o o
dimensions 02
-1 -05 [ 0.5 1 -1 -0.5 0 0.5 1
0.
Y N=4 oos N=32

Null Hypothesis: 0 003

Distribution of y 002

normalized 02 oot

dot product of STes 0 os U

pairs of o .

Gaussian vectors o2 N=8 oo N=64

in N dimensions: o015 008

0.01
(1 . d2)N2—3 0.005, 0.02|
Per capita cheese consumption r=0.95
Nevertheless Number of people who died by‘ l;ec‘or;l‘ily'lg tangled in their bedsheets l-
b

one can find :
correlation if .
one looks forit! = = =« « = wa aa ow

Worldwide non-commercial space launches

Sociology doctorates awarded (US) r=0.79

Letters in Winning Word of Scripps National Spelling Bee

Number of people killed by venomous spiders  r=0.81

http:/Awww.tylervigen.com/spurious-correlations




Covariation/correlation does not imply causatiorl

* Correlation does not provide a direction for causality.
For that, you need additional (temporal) information.

* More generally, correlations are often a result of
hidden (unmeasured, uncontrolled) variables...

Example: conditional independence: H
pA.BIH) = pa|HpBIH) @

/N
AbJ .B

[On board: in Gaussian case, connections are explicit in the precision matrix]

[

Another example: “Simpson’s paradox”

expression of gene B

expression of gene A

L

Milton Friedman’s Thermostat

. True interactions:
O = outside temperature (assumed cold)

I = inside temperature (ideally, constant) b —_ .

E = energy used for heating O E
A/
o,

Statistical interactions, P=C-1:
Statistical observations: -
® O and I uncorrelated ®— .
® [ and E uncorrelated 0]
® O and E anti-correlated
S,

E

Some nonsensical conclusions:
® O and E have no effect on I, so shut off heater to save money!
e [ is irrelevant, and can be ignored. Increases in E cause decreases in O.

Statistical summary cannot replace scientific reasoning/experiments!




Summary: Correlation misinterpretations

* Independent implies uncorrelated. But uncorrelated does
not imply independent.

* Correlation implies dependency, but does not imply data lie
near a line/plane/hyperplane.

* Correlation does not imply causation, since it often arises
from hidden factors.

¢ Correlation is a descriptive statistic, and does not
eliminate the need for reasoning/experiments/models!




