Mathematical Tools for Neural and Cognitive Science Fall semester, 2022 # Section 4: Summary Statistics & Probability Statistics is the science of learning from experience, especially experience that arrives a little bit at a time. The earliest information science was statistics, originating in about 1650. This century has seen statistical techniques become the analytic methods of choice in biomedical science, psychology, education, economics, communications theory, sociology, genetic studies, epidemiology, and other areas. Recently, traditional sciences like geology, physics, and astronomy have begun to make increasing use of statistical methods as they focus on areas that demand informational efficiency, such as the study of rare and exotic particles or extremely distant galaxies. Most people are not natural-born statisticians. Left to our own devices we are not very good at picking out patterns from a sea of noisy data. To put it another way, we are all too good at picking out non-existent patterns that happen to suit our purposes. Statistical theory attacks the problem from both ends. It provides optimal methods for finding a real signal in a noisy background, and also provides strict checks against the overinterpretation of random patterns. [Efron & Tibshirani, 1998] #### Historical context - 1600's: Early notions of data summary/averaging - 1700's: Bayesian prob/statistics (Bayes, Laplace) - 1920's: Frequentist statistics for science (e.g., Fisher) - 1940's: Statistical signal analysis and communication, estimation/decision theory (e.g., Shannon, Wiener, etc) - 1950's: Return of Bayesian statistics (e.g., Jeffreys, Wald, Savage, Jaynes...) - 1970's: Computation, optimization, simulation (e.g., Tukey) - 2000's: Machine learning (statistical inference with large-scale computing + lots of data) - Also (since 1950's): statistical neural/cognitive models! # Statistics as summary description 0.1, 4.5, -2.3, 0.8, -1.1, 3.2, ... "The purpose of statistics is to replace a quantity of data by relatively few quantities which shall ... contain as much as possible, ideally the whole, of the relevant information contained in the original data" - R.A. Fisher, 1934 # Descriptive statistics # Descriptive statistics: average/variance - Often use average & variance for central tendency & dispersion - Sample average minimizes **squared error** (regression!): $$\bar{x} = \arg\min_{c} \frac{1}{N} \sum_{n=1}^{N} (x_n - c)^2 = \arg\min_{c} \frac{1}{N} ||\vec{x} - c\vec{1}||^2$$ $$=\frac{\vec{1}^T\vec{x}}{\vec{1}^T\vec{1}}=\frac{1}{N}\vec{1}^T\vec{x}$$ • Sample variance *is* squared error: $s_x^2 = \min_c \frac{1}{N} \sum_{n=1}^{N} (x_n - c)^2$ $$= \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2 = \frac{1}{N} \sum_{n=1}^{N} x_n^2 - \bar{x}^2$$ #### Descriptive statistics: alternatives More generally, define ${\bf dispersion}$ in terms of the " $$L_p$$ norm": $$\arg\min_{c} \left[\frac{1}{N} \sum_{n=1}^{N} \left| x_n - c \right|^p \right]^{1/p}$$ Different values of *p* lead to different measures of **central tendency**: - p=1 : median - $p \to 0$: mode (location of maximum) - $p \to \infty$: midpoint of range # Descriptive statistics: Multi-D Data points: $\left\{ \overrightarrow{d}_{n} \right\}$ $n \in [1...N]$, in 2-D: $\overrightarrow{d}_{n} = \begin{bmatrix} x_{n} \\ y_{n} \end{bmatrix}$ As in 1D: define central tendency as vector that minimizes the sum of squared distances to all data points: $$\vec{d} \equiv \arg\min_{\vec{c}} \sum_{n} \| \vec{d}_{n} - \vec{c} \|^{2}$$ $$= \arg\min_{c_{x}, c_{y}} \sum_{n} (x_{n} - c_{x})^{2} + (y_{n} - c_{y})^{2}$$ $$= \frac{1}{N} \sum_{n=1}^{N} \vec{d}_{n} = \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$ (in 2-D) # Descriptive statistics: Multi-D Data points: $\left\{\overrightarrow{d}_n\right\}$ $n \in [1...N]$ Sample mean (average): $$\bar{d} = \frac{1}{N} \sum_{n=1}^{N} \vec{d}_{n} = \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$ Sample covariance: $$\begin{split} C_{d} &= \frac{1}{N} \sum_{n=1}^{N} (\vec{d}_{n} - \bar{d}) (\vec{d}_{n} - \bar{d})^{T} = \frac{1}{N} \sum_{n=1}^{N} \vec{d}_{n} \vec{d}_{n}^{T} - \bar{d} \bar{d}^{T} \\ &= \frac{1}{N} \begin{bmatrix} ||\vec{x}||^{2} & \vec{x}^{T} \vec{y} \\ \vec{y}^{T} \vec{x} & ||\vec{y}||^{2} \end{bmatrix} - \begin{bmatrix} \bar{x}^{2} & \bar{x} \bar{y} \\ \bar{y} \bar{x} & \bar{y}^{2} \end{bmatrix} = \begin{bmatrix} s_{x}^{2} & s_{xy} \\ s_{xy} & s_{y}^{2} \end{bmatrix} \end{split}$$ ### Affine transformations If $$\vec{b}_n = M \left(\vec{d}_n - \vec{a} \right)$$ (translate, then rotate-stretch-rotate) then $$\bar{b} = M \left(\bar{d} - \vec{a} \right)$$ $$C_b = MC_d M^T$$ Standard case: "re-center" and "normalize" the data: Let $$\vec{a} = \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$ $M = \begin{bmatrix} \frac{1}{s_x} & 0 \\ 0 & \frac{1}{s_y} \end{bmatrix}$ $$M = \begin{bmatrix} \frac{1}{s_x} \\ 0 \end{bmatrix}$$ $$= \begin{bmatrix} \frac{1}{s_x} & 0\\ 0 & \frac{1}{s_y} \end{bmatrix}$$ then $$\bar{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$ then $$\bar{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$ $C_b = \begin{bmatrix} 1 \\ \frac{s_{xy}}{s_x s_y} \end{bmatrix}$ [on board] #### Correlation # Correlation (r) captures dependency ... but not slope! # Regression (revisited) $$\vec{y} = \beta \vec{x} + \vec{e}$$ Optimal regression line slope: $$\beta = \frac{\vec{x}^T \vec{y}}{\vec{x}^T \vec{x}} = \frac{s_{xy}}{s_x^2}$$ Error variance: $$s_e^2 = s_y^2 - 2\beta s_{xy} + \beta^2 s_x^2$$ $$=s_y^2- rac{s_{xy}^2}{s_x^2}$$ Partition of variance: error variance = data variance - explained variance Expressed as a proportion of σ_v^2 : ssed as a proportion of $$\sigma_y^2$$: "r-squared" (proportion of $s_e^2 = 1 - \frac{s_{xy}^2}{s_y^2 s_y^2} = 1$ — r^2 of variance explained) Probability: an abstract mathematical framework for describing random quantities, or stochastic models of the world Statistics: use of probability to summarize, analyze, and interpret data. Fundamental to all experimental science. # Univariate Probability (outline) - distributions: discrete and continuous - expected value, moments - transformations: affine, monotonic nonlinear - cumulative distributions. Quantiles, drawing samples Frequentist view of probability: limit of infinite data # Expected value (for a discrete random variable) $$\mu_x = \mathbb{E}(x) = \sum_{k=1}^K x_k \ P(x_k)$$ a weighted sum over the discrete values More generally: $$\mathbb{E}\left(f(x)\right) = \sum_{k=1}^K f(x_k) P(x_k)$$ (sum over values of R.V.) Sample average, an estimate of the expected value: $$\mathbb{E}\left(f(x)\right) \approx \bar{f}(x) = \frac{1}{N} \sum_{n=1}^{N} f(x_n) \qquad \text{(sum over data samples)}$$ Sample average converges to expected value as one gathers more data... #### A note on notation - We have, and will continue to use the notation for a "sample mean" (\bar{x}) and a "sample standard deviation" (s) or variance (s^2) . - Statistics makes a distinction between these sample values and the corresponding "population" values of mean (μ) and variance (σ^2) . #### Expected value (continuous random variable) data → histogram → probability distribution $$\bar{x} = \frac{1}{N} \sum_{n} x_n$$ $\bar{x} \approx \frac{1}{K} \sum_{k} c_k h_k = \overrightarrow{c}^T \overrightarrow{h}$ $\mu_x = \int x \ p(x) \ dx$ # Expected value (continuous) $$\mathbb{E}(x) = \int x \ p(x) \ dx \qquad \qquad \text{["mean", μ]}$$ $$\mathbb{E}(x^2) = \int x^2 p(x) \ dx \qquad \qquad \text{["second moment", m_2]}$$ $$\mathbb{E}\left((x-\mu)^2\right) = \int (x-\mu)^2 \ p(x) \ dx \qquad \qquad \text{["variance", σ^2]}$$ $$= \int x^2 p(x) \ dx - \mu^2 \qquad \qquad \text{[m_2 minus μ^2]}$$ $$\mathbb{E}(f(x)) = \int f(x) \ p(x) \ dx \qquad \text{["expected value of } f\text{"]}$$ Note: expectation is an inner product, and thus linear, so: $$\mathbb{E}\left(af(x) + bg(x)\right) = a\mathbb{E}\left(f(x)\right) + b\mathbb{E}\left(g(x)\right)$$ ### Transformations of scalar random variables Y = aX + b "affine" (linear plus constant) Analogous to sample mean/covariance: $$\mu_Y = \mathbb{E}(Y) = a\mathbb{E}(X) + b = a\mu_X + b$$ $$\sigma_Y^2 = \mathbb{E}\left(\left(Y - \mu_Y\right)^2\right) = \mathbb{E}\left(\left(aX - a\mu_X\right)^2\right) = a^2\sigma_X^2$$ Full distribution: $p_Y(y) = \frac{1}{a} p_X\left(\frac{y-b}{a}\right)$ Y = g(X) (assume g is "monotonic" - derivative > 0) $$p_{y}(y) = \frac{p_{x}(g^{-1}(y))}{g'(g^{-1}(y))}$$ # Multi-variate probability (outline) - Joint distributions - Marginals (integrating) - Conditionals (slicing) - Bayes' rule (inverse probability) - Statistical independence (separability) - Mean/Covariance - Linear transformations # Joint and conditional probability - discrete # Conditional probability p(A | B) = probability of A given that B is asserted to be true = $\frac{p(A \& B)}{p(B)}$ # Joint and conditional probability - discrete P(Ace) P(Heart) P(Ace & Heart) "Independence" P(Ace | Heart) P(not Jack of Diamonds) P(Ace | not Jack of Diamonds) # Joint distribution (continuous) p(x,y) # Bayes' Rule LII. An Essay towards solving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Dear Sir, Read Dec. 25, Now fend you an effay which I have 1765: I found among the papers of our deceased friend Mr. Bayes, and which, in my opinion, has great merit, and well deserves to be preserved. $$p(x|y) = p(y|x) p(x)/p(y)$$ (a direct consequence of the definition of conditional probability) # Bayes' Rule p(A | B) = probability of A given that B is asserted to be true = $\frac{p(A \& B)}{p(B)}$ $$p(A \& B) = p(B)p(A \mid B)$$ $$= p(A)p(B|A)$$ $$\Rightarrow p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$ # Conditional vs. marginal In general, the marginals for different Y values differ. When are they they same? In particular, when are all conditionals equal to the marginal? # Statistical independence Random variables *X* and *Y* are statistically independent if (and only if): $$p(x,y) = p(x)p(y) \quad \forall x,y$$ (note: for discrete distributions, this is an outer product!) Independence implies that *all* conditionals are equal to the corresponding marginal: $$p(x | y) = p(x,y) / p(y) = p(x) \quad \forall x, y$$ #### Mean, covariance, affine transformations For R.V. $$\overrightarrow{x}$$, $\overrightarrow{\mu}_x = \mathbb{E}(\overrightarrow{x})$, $C_x = \mathbb{E}\left((\overrightarrow{x} - \overrightarrow{\mu}_x)(\overrightarrow{x} - \overrightarrow{\mu}_x)^T\right)$ For R.V. $$\overrightarrow{y} = M(\overrightarrow{x} - \overrightarrow{a})$$, analogous to results for sample mean/covariance: $$\begin{aligned} \overrightarrow{\mu}_y &= \mathbb{E} \big(M(\overrightarrow{x} - \overrightarrow{a}) \big) \\ &= M \left(\mathbb{E} (\overrightarrow{x}) - \overrightarrow{a}) \right) \\ &= M \left(\overrightarrow{\mu}_x - \overrightarrow{a} \right) \\ C_y &= \mathbb{E} \big((M(\overrightarrow{x} - \overrightarrow{\mu}_x)) (M(\overrightarrow{x} - \overrightarrow{\mu}_x))^T \big) \\ &= M \mathbb{E} \big((\overrightarrow{x} - \overrightarrow{\mu}_x)) (\overrightarrow{x} - \overrightarrow{\mu}_x))^T \big) M^T \\ &= M C_x M^T \end{aligned}$$ # Special case: Sum of two RVs Let $$Z = X + Y$$, or $Z = \overrightarrow{1}^T \begin{bmatrix} X \\ Y \end{bmatrix}$ $\mu_Z = \mu_X + \mu_Y$ $\sigma_Z^2 = \sigma_X^2 + 2\sigma_{XY} + \sigma_Y^2$ Special case: if *X* and *Y* are *independent*, then: $$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$ and thus $\sigma_{XY} = 0$ $$\sigma_Z^2 = \sigma_X^2 + \sigma_Y^2$$ $$p_{Z}(z)$$ is the *convolution* of $p_{X}(x)$ and $p_{Y}(y)$ [on board] # Gaussian (a.k.a. "Normal") densities One-dimensional: $$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$ Alt. notation: $x \sim N(\mu, \sigma^2)$ Multi-dimensional: $$p(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |C|}} e^{-(\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu})/2}$$ mean: [0.2, 0.8] cov: [1.0 -0.3; -0.3 0.4] # Gaussian properties $$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$ $$p(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |C|}} \; e^{-(\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu})/2}$$ - joint density of indep Gaussian RVs is elliptical [easy] - conditionals of a Gaussian are Gaussian [easy] - marginals of a Gaussian are Gaussian [easy] - product of two Gaussian dists is Gaussian [easy] - sum of independent Gaussian RVs is Gaussian [moderate - the most random (max entropy) density of given variance [moderate] - central limit theorem: sum of many indep. RVs is Gaussian [hard] let $$P = C^{-1}$$ (the "precision" matrix) $$\begin{split} p(x_1|x_2=a) &\propto e^{-\frac{1}{2}\left[P_{11}(x_1-\mu_1)^2+2P_{12}(x_1-\mu_1)(a-\mu_2)+\ldots\right]} \\ &= e^{-\frac{1}{2}\left[P_{11}x_1^2+2(P_{12}(a-\mu_2)-P_{11}\mu_1)x_1+\ldots\right]} \\ &= e^{-\frac{1}{2}\left(x_1-\mu_1+\frac{P_{12}}{P_{11}}(a-\mu_2)\right)P_{11}\left(x_1-\mu_1+\frac{P_{12}}{P_{11}}(a-\mu_2)\right)+\ldots} \end{split}$$ Gaussian, with: $\mu = \mu_1 - \frac{P_{12}}{P_{11}}(a - \mu_2)$ $\sigma^2 = \frac{1}{P_{11}}$ $p(x_1) = \int p(\vec{x}) \ dx_2$ [on board, $\mu = \mu_1$ Gaussian, with: $$\mu = \mu_1$$ $$\sigma^2 = C_{11}$$ ### Covariation/correlation does not imply causation - Correlation does not provide a direction for causality. For that, you need additional (temporal) information. - More generally, correlations are often a result of hidden (unmeasured, uncontrolled) variables... [On board: in Gaussian case, connections are explicit in the precision matrix] # Another example: "Simpson's paradox" H=0 expression of gene B expression of gene A # Milton Friedman's Thermostat True interactions O = outside temperature (assumed cold) I = inside temperature (ideally, constant) E = energy used for heatingStatistical interactions, P=C-1: Statistical observations: • O and I uncorrelated • I and E uncorrelated • O and E anti-correlated Some nonsensical conclusions: - O and E have no effect on I, so shut off heater to save money! - I is irrelevant, and can be ignored. Increases in E cause decreases in O. Statistical summary cannot replace scientific reasoning/experiments! # Summary: Correlation misinterpretations Independent implies uncorrelated. But uncorrelated does *not* imply independent. Correlation implies dependency, but does *not* imply data lie near a line/plane/hyperplane. Correlation does *not* imply causation, since it often arises from hidden factors. Correlation is a **descriptive statistic**, and does not eliminate the need for reasoning/experiments/models!