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Section 6

Model fitting:
comparison, selection and regularization

Taxonomy of model-fitting errors

Unexplainable variability (due to finite/noisy
measurements)

Overfitting (too many params, not enough data)

® Optimization failures (e.g., local minima)

Model failures (what you’d really like to know)

possibly non-unique

Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,

(local minima)
Quadratic

Iterative descent,
unique

Closed-form,
and unique




Model Comparison

« If models are optimized according to some objective, it is
natural to compare them based on the value of that objective...

- for least squares regression, compare the residual squared
error of two models (with different regressors).

- for ML estimates, compute the likelihood (or log likelihood)
ratio, and compare to 1 (or zero).

- for MAP estimates, common to compute the posterior ratio
(a.k.a. the Bayes factor)

* Problem: evaluating the objective with the same data used to
optimize the model leads to over-fitting! We really want to
predict error on non-training data...
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How do we avoid overfitting (i.e., concluding that M=7 is “best”)?

Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters:

For an ML estimate: 0 = arg mein {— lnp(cﬂe)}

a. Akaike information criterion (AIC) [Akaike, 1974]
Earc(d, 6) = 2 dim(6) — 21np(d|6)
b. Bayesian information criterion (BIC) [schwartz, 1978]
Epic(d,§) = dim(é) In [dim(d‘)} — 2Inp(d|d)
valid when dim(F) >> dim(é)

Option 2: Cross-validation: partition data into two subsets, fit
parameters to “training” subset, evaluate objective on “test”
subset.




Cross-validation

A resampling method for estimating predictive error of a model.
Widely used to identify/avoid over-fitting, and to provide a fair
comparison of models.
Using cross-validation to select the
degree of a polynomial model:

(1) Randomly partition data into 10°
a “training” set, and a “test” — train error
— test error
set. 10 —— true degree
. .. —— true error
(2) Fit model to training set.
Measure error on test set. w
] @ 10°
(3) Repeat (many times). =
(4) Choose model that 10
minimizes the average cross-
validated (“test”) error
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Ridge regression
(ak.a. L regularization)

Ordinary least squares regression:

arg min ||y — XA e OLS estimate
B estimate

“Regularized” least squares regression:

T7th-order polynomial regression:
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Ridge Regression trades off bias and variance:
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[from http://www.stat.cmu.edu/~ryantibs/datamining/]




argmin ||§ - ZBII* + X8|

L, regularization

(a.k.a. “least absolute shrinkage and selection operator” - LASSO)

Assuming ||i“H2 =1,

[derivation on board]

MAP interpretation:

Gaussian noise,

“Laplacian” prior
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LASSO vs. ridge regression

Table 2.1 Crime data: Crime rate and five predictors, for N =50 U.S. cities

city | funding hs not-hs college college4 crime rate
T 10 74 11 31 2 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 73
50 66 67 26 18 16 940
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[From Hastie, Tibshirani, Wainwright 2015]




The “Relaxed LASSO”

To reduce bias, re-solve for non-
zero coefficients after eliminating
unused regressors

)
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Clustering
* K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)

* In general, alternate between:
1) Estimating cluster assignments
2) Estimating cluster parameters

* Coordinate descent: converges to (possibly local) minimum

* Need to choose K (number of clusters) - cross-validation!

K-Means algorithm - alternate between two steps:

1. Estimate cluster assignments: given class centers,
assign each point to closest one.

Voronoi regions:

Soap bubbles:

2. Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.




K-means example

N =300, and K =3

Initial centers Meration 1

Heration 2

[from R. Tibshirani, 2013]

K-means optimization failures

Initialization matters (due to local minima) ...
Three solutions obtained with different random starting points:
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[from R. Tibshirani, 2013]

K-means systematic failures

Non-convex/non-round-shaped clusters

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)




ML for discrete mixture of Gaussians: soft K-means

D@, fin, Ax) o Y~ e (P A i) 2
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Ank = assignment probability
{fr, Ak} =mean/covariance of class k
Intuition: alternate between maximizing these two sets of variables
(“coordinate descent”)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
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[wikipedia]

Application to neural “spike sorting”

Standard solution:

1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!




Failures of clustering for near-synchronous spikes

synchronous spiking
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[Pillow et. al. 2013]




