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Section 2: Least Squares

Least squarcs regression: “objective” or “error”
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Geometry:

Note: this is a 2-D cartoon
of the N-D vectors, not the
two-dimensional (x,y)
measurement space of
previous plots!

Note: partition of sum of squared data values:
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Solution via the “Orthogonality Principle”:

Construct matrix X, containing columns #7and %2

2D vector space
containing all linear
combinations of
and T2

Alternatively, can solve using SVD...
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where §* =UTg, §*=VT§3
Solution:  B5,¢k = Yi/Sk, for each k

or B = S*F = Pope = VSTUTY
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[on board: transformations, elliptical geometry]

Fitting a parametric model (general)
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To fit model f5(Z) to data {Z,, Jn},

optimize parameters [ to minimize an error function:
min Y E (G, ()
n

Ingredients: data, model, error function, optimization method




Optimization

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
(possibly) nonunique

Iterative descent,
guaranteed

Closed-form
guaranteed

Quadratic

Interpretation warning: fitting a line does not
guarantee data actually lie along a line

These 4 data sets give the same regression fit, and same error:
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Polynomial regression - how many terms?
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(to be continued, when we get to “statistics”...)

Weighted Least Squares

min Y [wn (g — Bzn)]”

— min W (7 - 52)| |

L diagonal matrix

Solution via simple extensions of basic regression solution
(ie,let ¥* =W¢ and Z* = W¥ and solve for 5 )
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Outliers
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error (y- Jop‘ X)

“Trimming”... discard points with large error.
Note: a special case of weighted least squares.
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Trimming can be done iteratively (discard outlier, re-fit, repeat),

a so-called “greedy” method. When do you stop?




More generally, use a “robust” error metric.
For example:

f(d) = d?

f(d) = log(c® + d?)

“Lorentzian”

d

Note: generally can’t obtain solution directly (i.e., requires an
iterative optimization procedure).

In some cases, can use iteratively re-weighted least squares (IRLS)...

Iteratively Re-weighted Least Squares (IRLS)

d2
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initialize: wflo) =1

50 = argmin 3 ol (3 — 52"
iterate " iterate
WU+ — [ (yn — B(l)xn)
" n B(i)xn

(one of many variants)

Constrained Least Squares

Linear constraint:
2 Tz
, where ¢ =1

arg min ng— Xg’
B

Quadratic constraint:
4112
arg min HX/J" ,
B

12
where H/J’H =1

Can be solved exactly using linear algebra (SVD)...
[on board, with geometry]




rotate by V7

stretch/squeeze by S* (nonzero rows of S)
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rotate by V7

=

stretch/squeeze by S* (nonzero rows of S)

Solution:
Beopt =V (S) T (F " +7E")

*

Write solution as: gjf,m =y "+
Solve for ~:
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Total Least Squares Regression
(a.k.a “orthogonal regression”)

Error is squared distance b
from the fitted line... .

expressed as: min ||Da|[?, where ||a]|* =1
u

Note: “data” matrix D now includes both x and y coordinates

Variance of data D, projected onto axis u: T o min
|USVTal[? = ||SVTal[? = [|Sa|[2 = ||a**|2, o
where D =USVT, a*=v7Ta, @ = Sa* —t—
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Set of s of Set of @™’s of First two components
length 1 length 1 of @™ (rest are zero!),
(i.e., unit vectors) (i.e., unit vectors) for three example S ’s.

Descriptive statistics

Data “Dispersion”

A

“Central tendency”




Descriptive statistics: Central tendency

* We often summarize data with averages. Why?

* Average minimizes the squared error (as in regression!):

1/p
¢ In general: minimize L, norm:  arg mcin { ! EN: |z, — cff }
* p=1 :median, My '
e p— 0 :mode (location of maximum)
* p — oo : midpoint of range

¢ Issues: outliers, asymmetry, bimodality

Descriptive statistics: Dispersion

e Sample variance (squared standard deviation):
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Mean absolute deviation (MAD) about the median:
1 N
dx = N ’;

¢ Quantiles (eg: “90% of data lie in range [1.5 8.2]”)

Xp — My

Descriptive statistics: Multi-D

_ - Ix
Data points: {dn} nell..N], in2D: d,= [y"]

As in 1D: define central tendency as vector that minimizes the
sum of squared distances to all data points:

d=argmin Y || d, - 7|
= arg min Z %, = c)* + (0, — ¢, (in 2-D)
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Descriptive statistics: Multi-D

Data points: {Z;l} n€l[l...N]

Sample mean (average):
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Total Least Squares Regression
(a.k.a “orthogonal regression”)

Error is squared distance 4
from the fitted line... Q
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expressed as: min || Da|[?, where ||a]|* =1
u

Note: “data” matrix D now includes both x and y coordinates
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3D geometry: 1
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Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse
(ellipsoid), centered around the mean, using a simple procedure:

(1) Subtract mean of all data points, to re-center around origin

(2) Assemble centered data vectors in rows of a matrix, D

3) Compute the SVD:

or just use the smaller matrix C=DTD=vsTsvT
=vAvT

(4) Columns of V" are the principal components (axes) of
the ellipsoid, diagonal elements §; or /), are the

corresponding principle radii, and their product is the volume.
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Fig 1. Relating biological and model networks using population analyses: Because
a model network typically does not attempt to replicate the precise anatomical connectivity of a
biological network, there is not a one-to-one correspondence of each biological neuron with a
model neuron. Dimensionality reduction can be used to obtain a concise summary of the
population activity from each network. This provides common ground for incisive comparisons
between biological and model networks. Discrepancies in the population activity structure
between biological and model networks can then help to refine model networks.

[Williamson, Doiron, Smith, Yu 2019]

Example: PCA for dimensionality reduction and visualization
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Eigenvectors/eigenvalues

¢ An eigenvector of a matrix is a vector that is rescaled by the matrix
(i.e., the direction is unchanged)

e The corresponding scale factor is called the eigenvalue

e Formatrix C' = DTD = VAV the columns of V' (denoted 7y, )
are eigenvectors, with corresponding eigenvalues )y :

Chor, = VAV 5y
= VAé
= )\k'&k




