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Section 6

Model fitting:
comparison, selection and regularization

Taxonomy of model-fitting errors

Unexplainable variability (due to finite/noisy
measurements)

Overfitting (too many params, not enough data)

Optimization failures (e.g., local minima)

Model failures (what you’d really like to know)

Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
possibly non-unique
(local minima)
Quadratic

Iterative descent,
unique
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Model Comparison

« If models are optimized according to some objective, it is
natural to compare them based on the value of that objective...

- for least squares regression, compare the residual squared
error of two models (with different regressors).

- for ML estimates, compute the likelihood (or log likelihood)
ratio, and compare to 1 (or zero).

- for MAP estimates, common to compute the posterior ratio
(a.k.a. the Bayes factor)

* Problem: evaluating the objective with the same data used to
optimize the model leads to over-fitting! We really want to
predict error on non-training data. ..
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How do we avoid overfitting (i.e., concluding that M=7 is “best”)?

Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters:
For an ML estimate: 6 = arg min p( jl o)
0
a. Compare Akaike information criterion (AIC) [Akaike, 1974]
Eno(d.0) =2 dim@) - 21n (p(7| é))
b. Compare Bayesian information criterion (BIC) [Schwartz, 1978]
Ey(d.60) = dim(@) In (dim(i’)) —2In (p(m é))
valid when dim(d) >> dim(d)

Option 2: Cross-validation: partition data into two subsets, fit
parameters to “training” subset, evaluate objective on “test”
subset.




Cross-validation

A resampling method for estimating predictive error of a model.
Widely used to identify/avoid over-fitting, and to provide a fair
comparison of models.
Using cross-validation to select the
degree of a polynomial model:

(1) Randomly partition data into 10°
a “training” set, and a “test” set. ::;asit“eer:gorr
(2) Fit model to training set. . —— true degree
Measure error on test set. 10 ——true error
(3) Repeat (many times)

g 10°
(4) Choose model that
minimizes the average cross- -
validated (“test”) error R
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Ridge regression
(a.k.a. Tikhonov regularization)

By

Ordinary least squares regression:

OLS estimate

Ridge
estimate

. — = 2
arg min |57 — X ]|
B
“Regularized” least squares regression: .

7th-order polynomial regression:
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* data

Equivalent formulation: MAP estimate, 4 S
idge reg

assuming Gaussian likelihood & prior! 8
2

Bridge = (XTX + X)X Ty SV

Choose lambda by cross-validation: 2
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from http://www.stat.cmu.edu/~ryantibs/datamining/




L, regularization

(a.k.a. “least absolute shrinkage and selection operator” - LASSO)

argmﬁin”g]f *ﬁ\|2+>\\5| Bors
Assuming ||£“‘||2 =1, b M2
BLASSO
[derivation on board] .
gridgc

8y

MAP interpretation:
Gaussian noise,
“Laplacian” prior

A2

multi-dimensional LASSO
argmﬁin 17— X812+ XD 18l
k

Using an absolute error regularization term promotes
binary selection of regressors:
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From Hastie, Tibshirani, Wainwright 2015
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LASSO vs. ridge regression

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city | funding hs not-hs college colleged crime rate

T 10 74 11 31 20 178

2 32 72 11 13 18 194

3 57 70 18 16 16 643

4 31 ket 11 25 19 341

5 67 72 9 29 24 773

50 66 67 26 18 16 940
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The “Relaxed LASSO”

To reduce bias, re-solve for non-
zero coefficients after eliminating
unused regressors

Clustering
* K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)

* In general, alternate between:
1) Estimating cluster assignments
2) Estimating cluster parameters

* Coordinate descent: converges to (possibly local) minimum

* Need to choose K (number of clusters) - cross-validation!




K-Means algorithm - alternate between two steps:

* Estimating cluster assignments: given class centers,
assign each point to closest one.

Soap bubbles:
T

* Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-means example
Here X; € R2, n =300, and K = 3
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[from R. Tibshirani, 2013]

Warning: Initialization matters (due to local minima) ...

Three solutions obtained with different random starting points:
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[from R. Tibshirani, 2013]




K-means failures

Non-convex,/non-round-shaped clusters
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Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

ML for discrete mixture of Gaussians: soft K-means

p(fn|ank7ﬂk,Ak)O<Z Ak o —(@n—fi) AL (Fn—iik) /2

—
E V |Ak|
Ank = assignment probability
{fk,Ar} =mean/covariance of class k
Intuition: alternate between maximizing these two sets of variables
(“coordinate descent”)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
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[wikipedia]




Application to neural “spike sorting”

Standard solution:

1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Failures of clustering for near-synchronous spikes

synchronous spiking

A, [ 1_[X

PC 1 projection

[Pillow et. al. 2013]

Simulated data [Quiroga et. al. 2004]

clustering (K-means) CBP
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[Ekanadham et al, 2014]




