Mathematical Tools for Neural and Cognitive Science

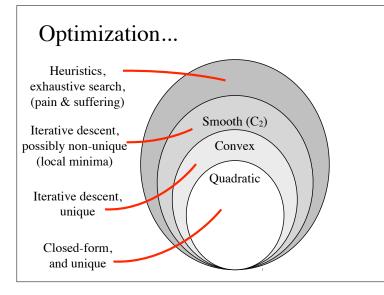
Fall semester, 2022

Section 6

Model fitting: comparison, selection and regularization

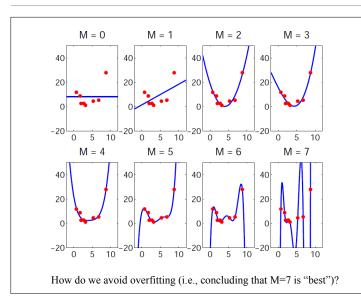
Taxonomy of model-fitting errors

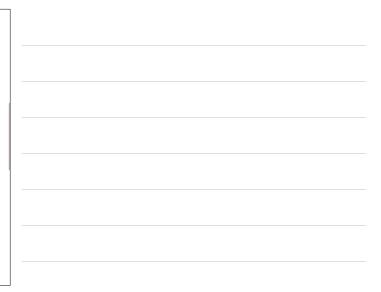
- Unexplainable variability (due to finite/noisy measurements)
- Overfitting (too many params, not enough data)
- Optimization failures (e.g., local minima)
- Model failures (what you'd really like to know)



Model Comparison

- If models are optimized according to some objective, it is natural to compare them based on the value of that objective...
 - for least squares regression, compare the residual squared error of two models (with different regressors).
 - for ML estimates, compute the likelihood (or log likelihood) ratio, and compare to 1 (or zero).
 - for MAP estimates, common to compute the posterior ratio (a.k.a. the *Bayes factor*)
- **Problem**: evaluating the objective with the same data used to optimize the model leads to over-fitting! We really want to predict error on non-training data...





Comparing models' predictive performance

Option 1: Include a penalty for number of parameters:

For an ML estimate: $\hat{\theta} = \arg \min_{\alpha} p(\vec{d} | \theta)$

a. Compare Akaike information criterion (AIC) [Akaike, 1974]

$$E_{\text{AIC}}(\vec{d}, \hat{\theta}) = 2 \dim(\hat{\theta}) - 2 \ln\left(p(\vec{d} \mid \hat{\theta})\right)$$

b. Compare Bayesian information criterion (BIC) [Schwartz, 1978]

 $E_{\text{BIC}}(\vec{d}, \hat{\theta}) = \dim(\hat{\theta}) \ln\left(\dim(\vec{d})\right) - 2\ln\left(p(\vec{d} \mid \hat{\theta})\right)$

valid when $\dim(\vec{d}) \gg \dim(\hat{\theta})$

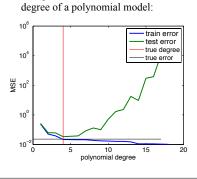
Option 2: Cross-validation: partition data into two subsets, fit parameters to "training" subset, evaluate objective on "test" subset.

Cross-validation

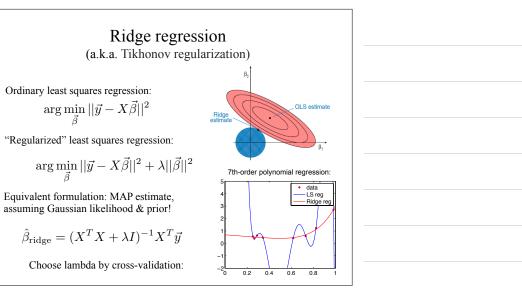
A resampling method for estimating predictive error of a model. Widely used to identify/avoid over-fitting, and to provide a fair comparison of models.

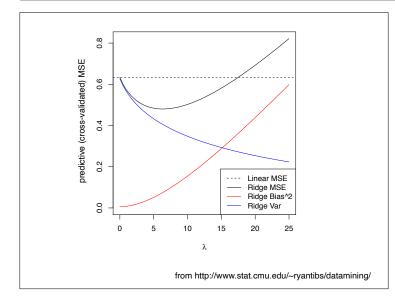
 (1) Randomly partition data into a "training" set, and a "test" set.
 (2) Fit model to training set.
 Measure error on test set.
 (3) Repeat (many times)

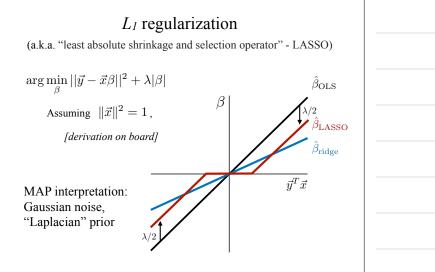
(4) Choose model that minimizes the average crossvalidated ("test") error

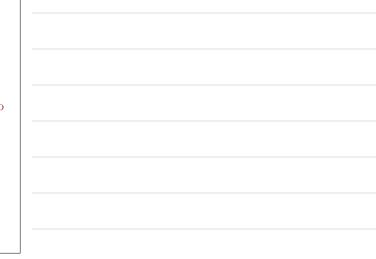


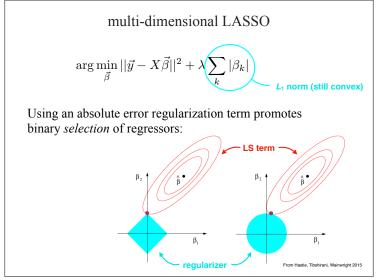
Using cross-validation to select the

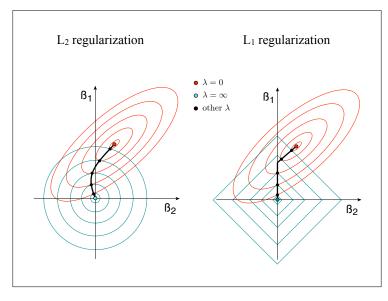


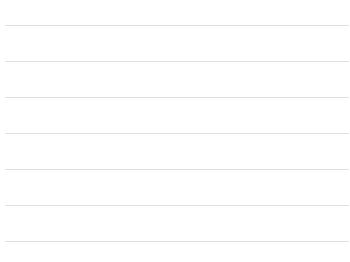


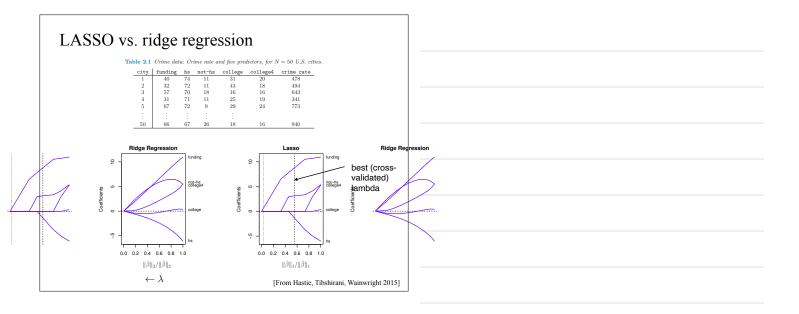


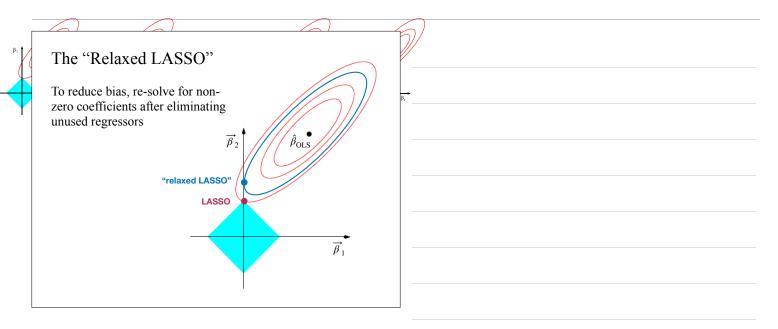








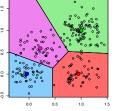




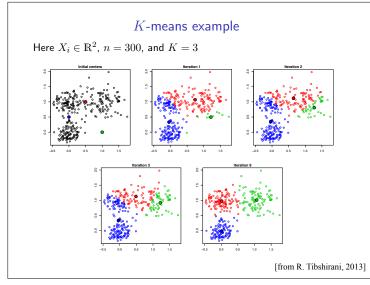
Clustering

- K-Means (Lloyd, 1957)
- "Soft-assignment" version of K-means (a form of Expectation-Maximization - EM)
- In general, alternate between:
 1) Estimating cluster assignments
 2) Estimating cluster parameters
- · Coordinate descent: converges to (possibly local) minimum
- Need to choose K (number of clusters) cross-validation!

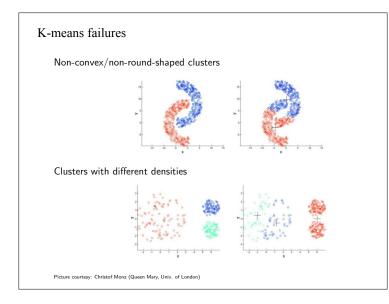
- K-Means algorithm alternate between two steps:
 - Estimating cluster assignments: given class centers, assign each point to closest one.

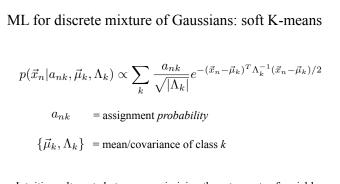


• Estimating cluster parameters: given assignments, reestimate the centroid of each cluster.



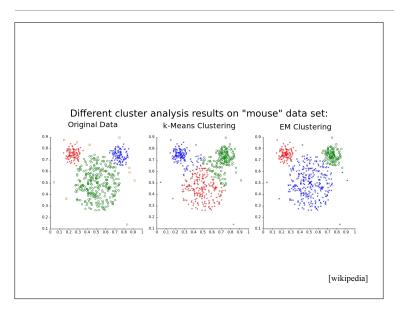
Warning: Initialization matters (due to local minima) ... Three solutions obtained with different random starting points: 0 = 0 = 0

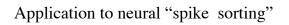


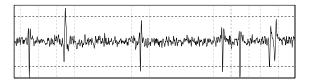


Intuition: alternate between maximizing these two sets of variables ("coordinate descent")

Essentially, a version of K-means with "soft" (i.e., continuous, as opposed to binary) assignments!







Standard solution:

- 1. Threshold to find segments containing spikes
- 2. Reduce dimensionality of segments using PCA
- 3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

