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Fall semester, 2022

Section 3:
Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

® [inearity (previously discussed):

t3]

“linear combination in, linear combination out

® Shift-invariance (new property):

“shifted vector in, shifted vector out”

® These two properties are independent (think of
some examples that have both, one, or neither)

As before, express input as a sum of
“impulses”, weighted by elements of x
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LSI system

e Linearity => response to x is sum of
responses to impulses, weighted by
elements of x

« Shift-invariance => responses to
impulses are shifted copies of each other
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LSI systems are characterized by their “impulse response”
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Convolution
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® Boundaries? zero-padding, reflection, circular

Examples: impulse, delay, average, difference

Feedback LSI system
;o
| * Response depends on input, and
\ l previous outputs
/fvc? e Infinite impulse response (IIR)
) | | o * Recursive => possibly unstable
)

y(n) =Y fln—k)a(k)+ Y g(n — k)y(k)
k k

(For this class, we’ll stick to feedforward (FIR) systems)
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[figure c/o Castleman]




“separable” filter

|
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® Quter product
® Simple design/implementation
e Efficient computation

[figure: Adelson & Bergen 85]

Discrete Sinusoids

“frequency” (cycles/vectorLength)
example : k =2

cos(wn),  w = 2mk/N , i i illig T i
L) “frequency” ’ " ” ®
(radians/sample) example : A =15, ¢ = 8r/32

More generally: A cos(wn — @)
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“amplitude” o 10 20 30
“phase” (radians)

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)
... via a well-known trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

We’ll also need conversions between polar
and rectangular coordinates:

x = Acos(¢), y= Asin(¢)

A=z2+y2, ¢ =tan"'(y/z)




Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

scale factors:
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=16, ¢=2n1/12
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=16, p=21612 | 1 TT
Ts
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!




LSI response to sinusoids

x(n) = cos(wn)  (inpuy

y(n) = Z ’r’(m) COS (w (’n, — m)) (convolution formula)

LSI response to sinusoids

z(n) = cos(wn)

Z r(m) o8 (w (TL B m)) (trig identity)

cos(wn) sin(wn)

inner product of impulse response with cos/sin, respectively

y(n)

LSI response to sinusoids

z(n) = cos(wn)

y(n) = 3 r(m)cos (win —m))

Cos(wn) sin(wn)

= cr(w) cos(wn) + sr(w) sin(wn)

er(w)

sr(w)




LSI response to sinusoids
z(n) = cos(wn)

y(n) = Y r(m)cos(wn—m))

m

= Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

m m

= er(w) cos(wn) + sr(w) sin(wn)

A, (w) cos(dr(w))eos(wn) + (A, (w) sin(¢,(w))pin(wn)

(rectangular -> polar coordinates)
sp(w)

LSI response to sinusoids
z(n) = cos(wn)

y(n) = 3 r(m)cos (win —m))

m

Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

m m

= er(w) cos(wn) + sr(w) sin(wn)
= Ay (w)cos(¢p(w)) cos(wn) + A (w)sin(¢,(w))sin(wn)

= AT (w) Cos(wn — ¢)T (w)) (trig identity, in the opposite direction)

¢:&J) A

“Sinusoid in, sinusoid out” (with modified amplitude & phase)

—_— L —_— AT(w)[

LSI response to sinusoids

More generally, if input has amplitude A, and phase ¢, ,

z(n) = A, cos(wn — ¢,)

then linearity and shift-invariance tell us that

amplitudes multiply phases add

¢:&J) A

“Sinusoid in, sinusoid out” (with modified amplitude & phase)

—| L |— Ar(w)[




The Discrete Fourier transform (DFT)

e Construct an orthogonal matrix of sin/cos pairs,
covering different numbers of cycles

® Frequency multiples of 27/N radians/sample,
(specifically, 27k/N, for k=0,1,2,...N/2)

® For k=0 and k = N/2, only need the cosine part
(thus, N/2+1 cosines,and N/2 — 1 sines)

® When we apply this matrix to an input vector, think
of output as paired coordinates

e Common to plot these pairs as amplitude/phase

[details on board...]

Discrete Fourier Transform matrix

=0 k=1 k=2 k=3 k=N/2

F o= g
q

Note:
cos <—n> sin (—n) « plotted sinusoids are continuous, N=32
- first and last frequencies are cos only

The Fourier family

signal domain

continuous discrete
discrete-time Fourier transform

continuous | Fourier transform
discrete Fourier series @ discrete Fourier transform I

frequency
domain

(we are here)

The “fast Fourier transform” (FFT) is a computationally efficient
implementation of the DFT, requiring Nlog(N) operations,
compared to the N2 operations that would be needed for matrix

multiplication.




Reminder: LSI response to sinusoids
z(n) = cos(wn)
y(n) = Y r(m)cos(w(n —m))

= cr(w) cos(wn) + Sr(w) sin(wn)

= A (w)cos(¢p(w))cos(wn) + Ap(w)sin(¢,(w))sin(wn)

= A;(w)cos(wn — ¢ (w))

These dot products are the Discrete Fourier Transform
of the impulse response, r(m)!

Fourier & LSI
r /\/\\/V\/\/v —{ L -
Fourier & LSI
r /\/\\/V\/\/v —{ L -
I}
F.’E(O)
¢ (1)
91"(1)
Cm(z)
52(2)

note: only 3 (of many) frequency components shown




Fourier & LSI

z /\/\\/\/\/\/\/ _’
I}

note: only 3 (of many) frequency components shown

Fourier & LSI
t /\\/\\/\/\/\/\/ — L=
I}

A4(0)  A(0) x A4(0)

62(1) ér(1) + 64(1)
A,(1) L A X As()

60(2) 6r(2) + 62(2)
A, (2) Ar(2) x Ay(2)

—
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LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

e = cos(#) + isin(0) (Euler’s formula)

Ae™™ = Acos(wn) + iAsin(wn)

real part:

imaginary part:

[on board: reminders of additi ltiplication of complex numbers]




Complex exponentials:
“bundling” sine and cosine

eiwn L Ar(w) etlwn—or(w)) AT(UJ) e—itr(w) giwn

F.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

eiwn L Ar(w) etlwn—or(w)) AT(w) e—ibr(w) giwn

F.T. of impulse response!

Note: the complex exponentials are eigenvectors!

The “convolution theorem”

T e——p Y

convolve with 7




The “convolution theorem”

—

Yy
convolve with 7
pointwise multiply by 7*
Y

—

ULIOJSURI], JOLINO,]
9SIoAUL

Fourier Transform
N — 8y

The “convolution theorem”

convolve with 7

Fourier Transform
H
WLIOJSURI], JOLINO
ASIOAUIL

pointwise multiply by 7*
z 7
7=L%=FRFT% = FTy=RFTz
‘\ (diagonal matrix) /J

Recap...

® Linear system
- defined by superposition

- characterized by a matrix

® Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector, which can be either:
» the impulse response

» the frequency response (amplitude and phase).
Specifically, the Fourier Transform of the impulse
response specifies an amplitude multiplier and a
phase shift for each frequency.




Discrete Fourier transform
(with complex numbers)

N—1
~ —iw 27Tk3
— kT h —
rk—g Tpe where wp = —
N
n=0
N-1
1 ~ TWEN .
Ty = — T e'F (inverse)
N k=0

[on board: why minus sign? why 1/N?]

Visualizing the (Discrete)
Fourier Transform

® Two conventional choices for frequency axis:

= Plot frequencies from k =0 to k = N/2

(in matlab: 1 to N/2+1)

= Plot frequencies from k = -N/2+1 to k= N/2

(in matlab: recenter using fftshift)

Typically, we plot amplitude (and optionally,
phase), instead of the real/imaginary (cosine/sine)
components

Some examples

constant

sinusoid (see next slide)

impulse

Gaussian - “lowpass”

Derivative of Gaussian - “bandpass”

DoG (difference of 2 Gaussians) - “bandpass”

Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]




—iwn

e™™ = cos(wn) + isin(wn) e = cos(wn) — isin(wn)
1. »
COS(WTL) = 5(euz.i'n, +e 'l,w'n,)

;i(eiwn _ e—iwn)

sin(wn) = 7

Example for k=2, N=32 (note indexing and amplitudes):

7 & = fit() fTtshift(7)
[ iliie A o I " 1
S ] e sy 0
' IR Bl X [ ” I
) HITIE U ol ] (mag pro) 10 |

What do we do with
Fourier Transforms?

* Represent/analyze periodic signals

* Analyze/design LSI systems. In particular, how do
you identify the nullspace?

Retinal ganglion cells (1D)
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Enroth-Cugell and Robson (1984)




Sampling causes “aliasing”
0 1 2 3 4 5 6 7 8 9 10

Sampling process is linear, but many-to-one (non-invertible)

o

“Aliasing” - one frequency masquerades as another /on board]

Given the samples, it is common/natural to assume, or enforce,
that they arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies

%@ -
- T R T Lo
—21/A 2m/A
Real-world
aliasing

downsample by 2

“Moiré pattern”




Pre-filtering to avoid spectral overlap (“aliasing”)

X(w) —[ L(w) ]—P/%—» X, (w)

| Xs(w

|X(/‘”j|‘/\/\/
lowpass filter,
W wf at /A

T T
N 2/

Real-world
aliasing

downsample by 2,

\with pre-filtering




