
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2021
Mathematical Tools for Neural and Cognitive Science

Homework 5

Due: 24 Nov 2021
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please don’t
procrastinate until the day before the due date... start now!

1. Dueling estimators. In this problem, we use simulation to compare three estimators of the
mean of a Normal (Gaussian) distribution.

(a). First consider the average, which minimizes the sum of squared deviations, and is also
the Maximum Likelihood estimator. Generate 10,000 samples, each of size 10, from the
Normal(0,1) distribution (a 10x10000 matrix). Compute the average of each of the 10,000
samples. Plot a histogram of the resulting estimates (use 50 bins, and set the plot range to
[-2.3,2.3]). What shape should the histogram have (explain why)? What is the (theoretical)
variance of the average of 10 values drawn from a univariate Gaussian (derive this)? Is the
empirical variance of your 10,000 estimates close to this?

(b). Now consider the median, which minimizes the sum of absolute deviations. Compute
the median of each of the 10,000 samples, and again plot a histogram. What shape does this
one have? Compare it to a normal distribution using the function normplot, which plots the
quantiles of a sample of data versus the normal quantiles (known as a Q-Q plot: if data are
normally distributed, the points shuld fall nearly on a straight line.) Does the distribution of
estimated values deviate significantly from a Normal distribution? Specifically, compare the
Q-Q plot for the median estimator to that for the mean from part (a).

(c). Finally, consider an estimator that computes the average of the minimum and maximum
over the sample (as shown in class, this one minimizes the L∞−norm). Again, compute this
estimate for each of your 10,000 samples, plot the histogram, and examine and comment on
the Q-Q plot, just as in part (b).

(d). All three of these estimators are unbiased (because of the symmetry of the distribution),
so we can use variance as the sole criterion for quality. Generate a new set of 10,000 sam-
ples, this time of dimension 256. Apply each estimator to sub-matrices of samples of size
{8, 16, 32, 64, 128, 256}, and compute the variance of each estimator for each. Plot these (on
a single log-log plot), along with a line showing the theoretically-computed variance of the
average estimator. Does the variance of all three estimators converge at the same rate (1/N)?
How much larger is the variance of the median estimator than the average estimator? How
large a sample would you need for the average and median estimators to achieve the same
variance as the average-extrema estimator (from part (c)) on samples of size 256?

2. Bayesian inference of binomial proportions. Poldrack (2006) published an influential
attack on the practice of “reverse inference” in fMRI studies, i.e., inferring that a cognitive
process was engaged on the basis of activation in some area. For instance, if Broca’s area was
found to be activated using standard fMRI statistical-contrast techniques, researchers might
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infer that the subjects were using language. In a search of the literature, Poldrack found that
Broca’s area was reported activated in 103 out of 869 fMRI contrasts involving engagement
of language, but this area was also active in 199 out of 2353 contrasts not involving language.

(a) Assume that the conditional probability of activation given language, as well as that of
activation given no language, each follow a Bernoulli distribution (i.e., like coin-flipping),
with parameters xl and xnl. Compute the likelihoods of these parameters, given Poldrack’s
observed frequencies of activation. Compute these functions at the values x=[0:.001:1] and
plot them as a bar chart.

(b) Find the value of x that maximizes each discretized likelihood function. Compare these
to the exact maximum likelihood estimates given by the formula for the ML estimator of a
Bernoulli probability.

(c) Using the likelihood functions computed for discrete x, compute and plot the discrete
posterior distributions P (x | data) and the associated cumulative distributions P (X ≤ x |
data) for both processes. For this, assume a uniform prior P (x) ∝ 1 and note that it will
be necessary to compute (rather than ignore) the normalizing constant for Bayes’ rule. Use
the cumulative distributions to compute (discrete approximations to) upper and lower 95%
confidence bounds on each proportion.

(d) Are these frequencies different from one another? Consider the joint posterior distribution
over xl and xnl, the Bernoulli probability parameters for the language and non-language
contrasts. Given that these two frequencies are independent, the (discrete) joint distribution
is given by the outer product of the two marginals. Plot it (with imagesc). Compute (by
summing the appropriate entries in the joint distribution) the posterior probabilities that
xl > xnl and, conversely, that xl ≤ xnl.
(e) Is this difference sufficient to support reverse inference? Compute the probability P (language |
activation). This is the probability that observing activation in Broca’s area implies engage-
ment of language processes. To do this use the estimates from part (b) as the relevant condi-
tional probabilities, and assuming the prior that a contrast engages language, P (language) =
0.5. Poldrack’s critique said that we cannot simply conclude that activation in a given area
indicates that a cognitive process was engaged without computing the posterior probability. Is
this critique correct? To answer this, compare the Bayes factor ( p(language|activation)

p(not language|activation)) using
the maximum-likelihood estimates from Poldrack’s data of activation probabilities, compared
to the prior odds before running your experiment ( p(language)

p(not language)).

3. Simulating a 2AFC experiment. Consider a two-alternative forced-choice psychophysical
experiment (fancy name: heterochromatic brightness matching). Subjects are shown a blue
spot and a red spot and must decide which appears brighter. The intensity of the blue spot is
fixed, and that of the red spot is randomly varied over trials. The purpose of the experiment
is to estimate the intensity of red that matches the blue. For a red spot of brightness I, the
probability of the observer saying “The red spot is brighter” is:

p(I) = λ ∗ 1

2
+ (1− λ) ∗ Φ(I;µ, σ),

where Φ(I;µ, σ) is the cumulative distribution function of the Gaussian (normcdf in matlab)
with mean µ and standard deviation σ, evaluated at I. The parameter λ is called the “lapse
rate” and is the proportion of trials the observer didn’t pay attention and just guessed. The
function p(I) is known as the psychometric function.
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(a) Plot two psychometric functions, for {λ, µ, σ} equal to {.05, 5, 2} and {.05, 4, 3} (use
I = [1 : 10]). Describe the difference between these. If you increase µ, how does the
curve change? If you increase σ, how does the curve change? (If you are not sure, make
more plots with different parameter values.) What is the range of p(I)? Explain why
this range is appropriate.

(b) Write a function B=simpsych(lambda,mu,sigma,I,T) to simulate an experiment. The
arguments (I,T) are vectors of equal length, the first containing a list of intensities and
the number of trials to be run for each corresponding intensity. The function should
generate draws from p(I), and returns a vector, B, (of the same length as I and T ),
containing the number of trials for which the simulated observer responded that the red
spot was brighter, for each intensity I.

(c) Illustrate the use of simpsych with T=ones(1,7)*100 and I=1:7 for λ = 0.05, µ = 4
and σ = 1. Plot B ./ T vs I (as points) and plot the psychometric function p(I) (as a
curve) on the same graph.

(d) Do the same with T=ones(1,7)*10 and plot the results (including the psychometric
function). What is the difference between this and the plot of the previous question?

(e) For each simulated dataset, assume you know that λ = 0.05 and σ = 1 and compute
the likelihood of the data (or, more easily, its log) for values of µ ranging from 1 to 7 in
steps of 0.1. What is the (approximate) maximum-likelihood estimate of µ?

(f) Next, assume you don’t know the value of σ (but still know that λ = 0.05) and compute
the likelihood of the data for a grid of (µ, σ) pairs, where µ varies as before, and σ
ranges from 0.1 to 2.5 in steps of 0.1. What are the (approximate) maximum-likelihood
estimates of µ and σ?

4. Signal Detection Theory. Consider an experiment where a moving-dot visual stimulus
is presented to a subject. The difficulty of detecting the motion is varied by changing the
coherence of the moving dots, which is the fraction of dots moving to the right (at zero
coherence, the dots move randomly, and at 100% coherence, all of the dots move to the
right). Suppose we want to decide whether the stimulus is random or is moving to the right,
based on the response of a single neuron that fires at a random rate, whose mean is 5 spikes/s
in response to a 0% coherence noisy stimulus and 8 spikes/s for 10% coherence. Suppose also
that the distribution of firing rates is Gaussian with a standard deviation of 1 spikes/s for
both stimuli.

(a) For the “no coherence”’ stimulus, generate 1000 trials of the firing rate of the neuron in
response to these stimuli (i.e., draw 1000 random samples from a Gaussian with µ = 5
and σ = 1). Since we cannot have negative firing rates, set all rates that are below zero
to zero. Now do the same thing for the 10% coherence stimulus. On the same figure,
plot the histograms of the firing rates for each stimulus type.

(b) The success of the decoder (assuming this model of Gaussian noise) is determined by two
things, the separation of the mean firing rates and the standard deviation of the neuron.
From class, we know that this is captured in the measure known as d′. Calculate d′ for
this task and pair of stimuli (ignoring the fact that you are clipping firing rates at zero).

(c) Explain why the maximum likelihood decoder for this problem involves comparing the
measurement to a threshold. For various thresholds t, calculate the hit and false-alarm
rates using your sample data from (a), and plot these against each other (this is an
ROC curve, defined in class). What threshold would you pick based on this curve to
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maximize the percentage-correct of the decoder, assuming that 0% and 10% coherence
stimuli occur equally often. Plot this threshold as a point on the ROC curve and as a
vertical line on your histogram from part (a). Next, suppose that 10% coherence stimuli
occur 75% of the time. Determine and plot the threshold that maximizes percentage
correct for this new prior.

(d) Consider now a neuron with a more ”noisy” response so that the mean firing rates are
the same but the standard deviation is 2 spikes/s instead of 1 spike/s. What is the new
value of d′. Recompute and plot the optimal (maximum accuracy) thresholds for this
noisy neuron for both the 50-50 and 75-25 priors. How do they differ from those in the
previous part?


