
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2021
Mathematical Tools for Neural and Cognitive Science

Homework 1

Due: 24 Sep 2021
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Inner product with a unit vector. Given unit vector û, and an arbitrary vector ~v, write
(MATLAB or Python) expressions for computing:

(a) the component of ~v lying along the direction û,
(b) the component of ~v that is orthogonal (perpendicular) to û, and
(c) the distance from ~v to the component that lies along direction û.

Verify that your code is working by testing it on random vectors û and ~v (generate these
using randn in MATLAB or np.random.randn in Python, and don’t forget to re-scale û so
that it has unit length). First, do this visually with 2-dimensional vectors, by plotting û, ~v,
and the two components described in (a) and (b). (hint: execute axis equal in MATLAB
or plt.axis(‘equal’) in Python to ensure that the horizontal and vertical axes have the
same units). Then test it numerically in higher dimensions (e.g., 4) by writing expressions to
verify each of the following, and executing them on a few randomly drawn vectors ~v:

• the vector in (a) lies in the same (or opposite) direction as û.

• the vector in (a) is orthogonal to the vector in (b).

• the sum of the vectors in (a) and (b) is equal to ~v.

• the sum of squared lengths of the vectors in (a) and (b) is equal to ||~v||2.

2. Testing for (non)linearity. Suppose, for each of the systems below, you observe some
example input/output pairs of vectors (or scalars). Determine whether each system could
possibly be a linear system. If not, explain why. If so, provide an example of a matrix that
is consistent with the observed input/output pairs, and state whether you think that matrix
is unique (i.e., the only matrix that is consistent with the observations).

System 1: [3, 2] −→ 13
[-1, 1] −→ 3

System 2: 0 −→ [3, -3]

System 3: [5, 2.5] −→ [-5, -10]
[-1, -0.5] −→ [1, 2]

System 4: [1, 3] −→ [3, 1]
[1, -1] −→ [-2, 2]
[4, 0] −→ [1, 6]



2

3. Geometry of linear transformations

(a) Write a function plotVec2 that takes as an argument a matrix of height 2, and plots
each column vector from this matrix on 2-dimensional axes. It should check that the
matrix argument has height two, signaling an error if not. Vectors should be plotted as
a line from the origin to the vector position, using circle or other symbol to denote the
“head” (see help for function ’plot’). It should also draw the x and y axes, extending
from -1 to 1. The two axes should be equal size, so that horizontal units are equal to
vertical units (read the help for the function ’axis’).

(b) Write a second function vecLenAngle that takes two vectors as arguments and returns
the length (magnitude, or Euclidean-norm, not dimensionality) of each vector, as well as
the angle (in radians) between them. Decide how you would like to handle cases when
one (or both) vectors have zero length.

(c) Generate a random 2x2 matrix M , and decompose it using the SVD, M = USV T .
Now examine the action of this sequence of transformations on the two “standard basis”
vectors, {ê1, ê2}. Specifically, use vecLenAngle to examine the lengths and angle between
two basis vectors ên, the two vectors V T ên, the two vectors SV T ên, and the two vectors
USV T ên. Do these values change, and if so, after which transformation? Verify this is
consistent with their visual appearance by plotting each pair using plotVec2.

(d) Generate a data matrix P with 65 columns containing 2-dimensional unit-vectors ûn =
[cos(θn); sin(θn)], and θn = 2πn/64, n = 0, 1, . . . , 64. [Hint: Don’t use a for loop!
Create a vector containing the values of θn. ] Plot a single blue curve through these
points, and a red star (asterisk) at the location of the first point. Consider the action
of the matrix M from the previous problem on this set of points. In particular, apply
the SVD transformations one at a time to full set of points (again, think of a way to do
this without using a for loop!), plot them, and describe what geometric changes you see
(and why).

4. A simple visual neuron. Suppose an experiment on a retinal neuron in a particular species
of toad reveals that the responses are a weighted sum of the (positive-valued) intensities of
light that is sensed at 5 localized regions of the retina. The weight vector is [1, 4, 3.5, 2, 1]. (a)
Is this system linear? If so, express the response as a matrix multiplied by the input intensity
vector. If not, provide a counterexample. (b) What unit-length stimulus vector (i.e., vector of
light intensities) elicits the largest response in this neuron? Write a piece of code to compute
this, and explain how you arrived at your answer. (c) What physically-realizable unit-length
stimulus vector produces the smallest response in this neuron? Explain your reasoning. [hint:
visualize a simpler version of the problem, in 2 dimensions]

5. Gram-Schmidt. A classic method for iterative construction of an orthonormal basis is
known as Gram-Schmidt orthogonalization. First, one generates an arbitrary unit vector
(typically, by normalizing a vector created with randn or np.random.normal in Python).
Each subsequent basis vector is created by generating another arbitrary vector, subtracting
off the projections of that vector along each of the previously created basis vectors, and
normalizing the remaining vector.

Write a Matlab function gramSchmidt that takes a single argument, N , specifying the
dimensionality of the basis. It should then generate an N ×N matrix whose columns contain
a set of orthogonal normalized unit vectors. Try your function for N = 3, and plot the



3

basis vectors (you can use rotate3d in Matlab or see footnote1 in Python to interactively
examine these). Check your function numerically by calling it for an N much larger than 3
(e.g. 1000) and verifying that the resulting matrix is orthonormal (hint: you should be able
to do this without using loops). Extra credit: make your function recursive – instead of
using a for loop, have the function call itself, each time adding a new column to the matrix
of previously created orthogonal columns. To do this, you’ll probably need to write two
functions (a main function that initializes the problem, and a helper function that is called
with a matrix containing the current set of orthogonal columns and adds a new column until
the number of column equals the number of rows).

6. Null and Range spaces. Imagine you have a linear system characterized by matrix M ,
which takes as input a vector, ~v, and outputs a vector, ~y, such that ~y = M~v. Explain in a few
sentences what the null and range spaces of the matrix are. Now imagine a creature that
has a linear tactile system: it takes a vector input (of pressure measurements) and produces
a vector of neural responses. If the system has a non-zero null space, what does this tell you
about the creature’s perceptual capabilities?

Load the file mtxExamples.mat into your Matlab world (use scipy.io.loadmat in Python).
You’ll find a set of matrices named mtxN, with N = 1, 2.... For each matrix, use the SVD
to: (a) determine if there are non-trivial (i.e., non-zero) vectors in the input space that the
matrix maps to zero (i.e., determine if there’s a nullspace). If so, write a Matlab or Python
expression that generates a random example of such a vector, and verify that the matrix
maps it to the zero vector; (b) generate a random vector y that lies in the range space of the
matrix, and then verify that it’s in the range space by finding an input vector, x, such that
Mx = y.

1Make sure you run from mpl toolkits.mplot3d import Axes3D and %matplotlib notebook at some
point. Then run fig = plt.figure(); ax = fig.add subplot(111, projection(‘3d’)); ax.plot(‘‘whatever

you want’’). Note that this does not work in Colab, and you need to have Jupyter notebook on your own computer
for interactive 3D plots.


