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• Variance of      is              (the “standard error of the mean”, 
or SEM), and so converges to zero                           [on board]  

• “Unbiased”:      converges to the true mean,  
(formally, the “law of large numbers”)                     [on board] 

• The distribution          converges to a Gaussian (mean    
and variance           ): formally, the “Central Limit Theorem”
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µx = E(x̄)

true mean: [0 0.8]
true cov: [1.0 -0.25

-0.25 0.3]

sample mean: [-0.05 0.83]
sample cov: [0.95 -0.23

-0.23 0.29]

700 samples

Measurement
(sampling)

Inference

true density
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Central limit for a uniform distribution...

10k samples, uniform density (sigma=1)
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Statistical Rethinking, Richard McElreath

Classical “frequentist” statistical tests



Classical/frequentist approach - z
• In the general population, 

IQ is known to be 
distributed normally with  
• µ = 100,  σ = 15 

• We give a drug to 30 
people and test their IQ 

• H1: NZT improves IQ 
• H0 (“null”): it does nothing

Test statistic

• We calculate how far the observed value of the 
sample average is away from its expected value. 

• In units of standard error. 
• In this case, the test statistic is 

• Compare to a distribution, in this case z or N(0,1)

z = x − µ
SE

= x − µ
σ / N

Does NZT improve IQ scores or not?
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• µ = 100 (Population mean) 
• σ = 15 (Population standard deviation) 
• N = 30 (Sample contains scores from 

30 participants) 
• x = 108.3 (Sample mean)  
• z =  (x – µ)/SE = (108.3-100)/SE 

(Standardized score) 
• SE = σ / √N = 15/√30 = 2.74 
• Error bar/CI: ±2 SE  
• z = 8.3/2.74 = 3.03 
• p = 0.0012 
• Significant? 
• One- vs. two-tailed test  

The z-test

• µ = 100 (Population mean) 
• σ = 15 (Population standard 

deviation) 
• N = 30 (Sample contains scores from 

30 participants) 
• x = 104.2 (Sample mean)  
• z =  (x – µ)/SE = (104.2-100)/SE 
• SE = σ / √N = 15/√30 = 2.74  
• z = 4.2/2.74 = 1.53 
• p = 0.061 
• Significant?  

What if the measured effect of NZT had been 
half that?

Significance levels

• Are denoted by the Greek letter α. 
• In principle, we can pick anything that we 

consider unlikely.  
• In practice, the consensus is that a level of 0.05 or 

1 in 20 is considered as unlikely enough to reject 
H0 and accept the alternative. 

• A level of 0.01 or 1 in 100 is considered “highly 
significant” or “really unlikely”. 



Common misconceptions
Is “Statistically significant” a synonym for: 
• Substantial 
• Important 
• Big 
• Real 

Does statistical significance gives the 
• probability that the null hypothesis is true 
• probability that the null hypothesis is false 
• probability that the alternative hypothesis is true  
• probability that the alternative hypothesis is false 

Meaning of p-value.   Meaning of CI.

Student’s t-test
• σ not assumed known 
• Use 

 
 

• Why N-1? s is unbiased (unlike ML version), i.e.,  

• Test statistic is 
 

• Compare to t distribution for CIs and NHST 
• “Degrees of freedom” reduced by 1 to N-1 

𝔼(s2) = σ2

s2 =
xi − x( )2

i=1

N

∑
N −1

t =
x − µ0
s / N

The t distribution approaches the normal 
distribution for large N
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The z-test for binomial data

• Is the coin fair? 
• Lean on central limit theorem 
• Sample is n heads out of m tosses 
• Sample mean: 
• H0: p = 0.5 
• Binomial variability (one toss): 
• Test statistic: 

 

• Compare to z (standard normal) 
• For CI, use  

p̂ = n / m

σ = pq ,  where q = 1− p

z =
p̂ − p0
p0q0 / m

±zα /2 p̂q̂ / m

Other frequentist univariate tests

•       goodness of fit 
•       test of independence 
• test a variance using  
• F to compare variances (as a ratio) 
• Nonparametric tests (e.g., sign, rank-order, etc.)

χ 2

χ 2

χ 2

Null Hypothesis: 
Distribution of 
normalized  
dot product of 
pairs of  
Gaussian random 
vectors in N 
dimensions:
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Estimation of model parameters (outline)

• How do I compute estimated values from data? 

• How “good” are my estimates?  

• How well does my model explain data to which it 
was fit?  Other data (prediction/generalization)?  

• How do I compare models?

Estimation

• An “estimator” is a function of the data, intended to 
provide an approximation of the “true” value of a 
parameter 

• Traditionally, one evaluates estimator quality in terms of 
error mean (“bias”) and error variance  
(note: MSE = bias^2 + variance) 

• Traditional statistics aims for an unbiased estimator, with 
minimal variance (“MVUE”) 

• More nuanced contemporary view: trade off the bias 
and variance, through model selection, 
“regularization”,  or Bayesian “priors”

The maximum likelihood estimator (MLE)

Sample average is appropriate when one has direct 
measurements of the thing being estimated. But one may want 
to estimate something (e.g., a model parameter) that is 
indirectly related to the measurements… 

Natural choice: assuming a probability model 
find the value of      that maximizes this “likelihood” function 

{ ⃗x n} p( ⃗x |θ)
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Example: Estimate the probability of a 
flipped coin landing “heads” up, by 
observing some samples

Likelihood: 1 head observed Likelihood: 1 tail observed

θ θ
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More heads
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ore tails
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Likelihoods, p(H, T |θ)

Convergence (“consistency”)

Binomial:

Example ML Estimators - discrete
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Poisson: (k’s are measured 
event counts,  

 is mean)θ

(H is number of 
observed heads, in 
N flips of a coin, 

with probability of 
heads )θ

[on board]



Example ML Estimators - Continuous

µ̂ =
xn

n=1

N

∑
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∑
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(Note: this 
is biased!)
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Uniform:
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Properties of the MLE

• In general, the MLE is asymptotically unbiased and 
Gaussian, but can only rely on these if: 
- the likelihood model is correct 
- the MLE can be computed 
- you have lots of data  

• Estimates of confidence:  
• SEM (relevant for sample averages) 
• second deriv of NLL (multi-D: “Hessian”) 
• simulation (of estimates by sampling from           ) 
• bootstrapping (resample from the data, with replacement)

p(x|✓̂)

Bootstrapping
• “The Baron had fallen to the bottom of a deep lake.  

Just when it looked like all was lost, he thought to 
pick himself up by his own bootstraps”  
[Adventures of Baron von Munchausen, by Rudolph Erich Raspe] 

• A (re)sampling method for computing estimator 
dispersion (incl. stdev error bars or confidence 
intervals) 

• Idea: instead of looking at distribution of estimates 
across repeated experiments, look across repeated 
resampling (with replacement) from the existing 
data  (“bootstrapped” data sets)  



[Efron & Tibshirani ’98]

[New York Times, 27 Jan 1987]

Histogram of bootstrap estimates:
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=> with 95% confidence, 

[Efron & Tibshirani ’98]

Bayesian Inference

p(θ | data) = p(data |θ )p(θ )
p(data)

“Posterior”
“Prior”“Likelihood”

Normalization factor



Example: Posterior for coin 

infer whether a coin is fair by flipping it repeatedly 
here, x is the probability of heads (50% is fair) 
y1...n are the outcomes of flips 

Consider three different priors: 
 suspect fair suspect biased no idea

 prior fair prior biased prior uncertain

   x likelihood (heads)

   = posterior

   previous posteriors

   X likelihood (heads)

   = new posterior



   previous posteriors

   X likelihood (tails)

   = new posterior

Posteriors after observing 75 heads, 25 tails 

!prior differences are ultimately overwhelmed by data

PDFs

CDFs, and 95% confidence intervals

10H / 5T 20H / 10T2H / 1T

.975

.025

.19 .93

Bayesian confidence intervals



For measurements with Gaussian noise, and 
assuming a Gaussian prior, posterior is Gaussian.  

• MAP estimate is a weighted average of prior 
mean and measurement

• posterior is Gaussian, allowing sequential 
updating 

• explains “regression to the mean”, as 
shrinkage toward the prior

MAP estimation - Gaussian case

Completing the square shows that this 
posterior is also Gaussian, with

The average of y and µx, weighted by 
inverse variances (a.k.a. “precisions”)!
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“Depressed children treated with an energy drink improve 
significantly over a three-month period. I made up this 
newspaper headline, but the fact it reports is true: if you 
treated a group of depressed children for some time with an 
energy drink, they would show a clinically significant 
improvement….”  

“It is also the case that depressed children who spend some 
time standing on their head or hug a cat for twenty minutes 
a day will also show improvement.”  
   

- D. Kahneman

Regression to the mean
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TLS regression 
(largest eigenvector)

Least-squares 
regression

Two noisy measurements of the same variable:

,  independent

Joint measurement distribution:

LS Regression:  

nk ⇠ N(0,�n)

“regression 
to the mean”
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The hierarchy of statistical estimators

• Maximum likelihood (ML):  

• Maximum a posteriori (MAP): 
(requires prior,          )

• Bayes estimator (general): 
(requires loss,               )

• Bayes least squares (BLS): 
(special case, squared loss)

x̂(~d) = argmin
x̂

E
⇣
L(x, x̂)

��� ~d
⌘

x̂(~d) = argmin
x̂

E
⇣
(x� x̂)2

��� ~d
⌘

= E
⇣
x
��� ~d

⌘

L(x, x̂)

p(x)


