

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_r$$

What happens as N grows?

- Variance of \bar{x} is σ_x^2/N (the "standard error of the mean", or SEM), and so converges to zero [on board]
- "Unbiased": \bar{x} converges to the true mean, $\mu_x = \mathbb{E}(\bar{x})$ (formally, the "law of large numbers") [on board]
- The distribution p(x̄) converges to a Gaussian (mean μ_x and variance σ²_x/N): formally, the "Central Limit Theorem"

Classical/frequentist approach - z

- In the general population, IQ is known to be distributed normally with
 - $\mu = 100, \ \sigma = 15$
- We give a drug to 30 people and test their IQ
- + H_1 : NZT improves IQ
- H_0 ("null"): it does nothing

Test statistic

- We calculate how far the observed value of the sample average is away from its expected value.
- In units of standard error.
- In this case, the test statistic is

$$z = \frac{\overline{x} - \mu}{SE} = \frac{\overline{x} - \mu}{\sigma / \sqrt{N}}$$

• Compare to a distribution, in this case z or N(0,1)

Does NZT improve IQ scores or not?			
	Reality		
Decision		Yes	No
	Yes	Correct	Type I error α-error "False alarm"
	No	Type II error β-error "Miss"	Correct

Significance levels

- Are denoted by the Greek letter α .
- In principle, we can pick anything that we consider unlikely.
- In practice, the consensus is that a level of 0.05 or 1 in 20 is considered as unlikely enough to reject H_0 and accept the alternative.
- A level of 0.01 or 1 in 100 is considered "highly significant" or "really unlikely".

Student's t-test

- σ not assumed known
- Use $s^{2} = \frac{\sum_{i=1}^{N} (x_{i} \overline{x})^{2}}{N 1}$
- Why *N*-1? *s* is unbiased (unlike ML version), i.e., $\mathbb{E}(s^2) = \sigma^2$
- Test statistic is $t = \frac{\overline{x} \mu_0}{s / \sqrt{N}}$
- Compare to *t* distribution for CIs and NHST
- "Degrees of freedom" reduced by 1 to N-1

The *z*-test for binomial data

- Is the coin fair?
- Lean on central limit theorem
- Sample is *n* heads out of *m* tosses
- Sample mean: $\hat{p} = n / m$
- $H_0: p = 0.5$
- Binomial variability (one toss): $\sigma = \sqrt{pq}$, where q = 1 p• Test statistic: $\hat{p} - p_0$

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0 / m}}$$

• Compare to *z* (standard normal)

$$\pm z_{\alpha/2} \sqrt{\hat{p}\hat{q}} / m$$

Other frequentist univariate tests

- χ^2 goodness of fit
- χ^2 test of independence
- test a variance using χ^2
- *F* to compare variances (as a ratio)
- Nonparametric tests (e.g., sign, rank-order, etc.)

Estimation of model parameters (outline)

- How do I compute estimated values from data?
- How "good" are my estimates?
- How well does my model explain data to which it was fit? Other data (prediction/generalization)?
- How do I compare models?

Estimation

- An "estimator" is a function of the data, intended to provide an approximation of the "true" value of a parameter
- Traditionally, one evaluates estimator quality in terms of error mean ("bias") and error variance (note: MSE = bias^2 + variance)
- Traditional statistics aims for an unbiased estimator, with minimal variance ("MVUE")
- More nuanced contemporary view: trade off the bias and variance, through model selection, "regularization", or Bayesian "priors"

The maximum likelihood estimator (MLE)

Sample average is appropriate when one has direct measurements of the thing being estimated. But one may want to estimate something (e.g., a model parameter) that is *indirectly* related to the measurements...

Natural choice: assuming a probability model $p(\vec{x} | \theta)$ find the value of θ that maximizes this "likelihood" function

Example: Estimate the probability of a flipped coin landing "heads" up, by observing some samples

Properties of the MLE

- In general, the MLE is asymptotically *unbiased* and *Gaussian*, but can only rely on these if:
 - the likelihood model is correct
 - the MLE can be computed
 - you have lots of data
- Estimates of confidence:
 - SEM (relevant for sample averages)
 - second deriv of NLL (multi-D: "Hessian")
 - simulation (of estimates by sampling from $p(x|\hat{\theta})$)
 - bootstrapping (resample from *the data*, with replacement)

Bootstrapping

- "The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps" [Adventures of Baron von Munchausen, by Rudolph Erich Raspe]
- A (re)sampling method for computing estimator dispersion (incl. stdev error bars or confidence intervals)
- Idea: instead of looking at distribution of estimates across repeated experiments, look across repeated resampling (with replacement) from the *existing* data ("bootstrapped" data sets)

MAP estimation - Gaussian case

For measurements with Gaussian noise, and assuming a Gaussian prior, posterior is Gaussian.

- MAP estimate is a weighted average of prior mean and measurement
- posterior is Gaussian, allowing sequential updating
- explains "regression to the mean", as shrinkage toward the prior

Regression to the mean

"Depressed children treated with an energy drink improve significantly over a three-month period. I made up this newspaper headline, but the fact it reports is true: if you treated a group of depressed children for some time with an energy drink, they would show a clinically significant improvement...."

"It is also the case that depressed children who spend some time standing on their head or hug a cat for twenty minutes a day will also show improvement."

- D. Kahneman

