
Model fitting: 
comparison, selection and regularization

Mathematical Tools  
for Neural and Cognitive Science

Section 6 

Fall semester, 2021



• Unexplainable variability (due to finite/noisy 
measurements)

• Overfitting (too many params, not enough data)

• Optimization failures (e.g., local minima)

• Model failures (what you’d really like to know)

Taxonomy of model-fitting errors
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Optimization...
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exhaustive search, 
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Model Comparison
• If models are optimized according to some objective, it is 
natural to compare them based on the value of that objective…   

- for least squares regression, compare the residual squared 
error of two models (with different regressors). 

- for ML estimates, compute the likelihood (or log likelihood) 
ratio, and compare to 1 (or zero). 

- for MAP estimates, common to compute the posterior ratio 
(a.k.a. the Bayes factor) 

•Problem: evaluating the objective with the same data used to 
optimize the model leads to over-fitting!  We really want to 
predict error on non-training data…



How do we avoid overfitting (i.e., concluding that M=7 is “best”)?



Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters: 
 
 
 
 
 
 
 
 
 

Option 2: Cross-validation: partition data into two subsets, fit 
parameters to “training” subset, evaluate objective on “test” 
subset.

For an ML estimate:  

EAIC( ⃗d , ̂θ) = 2 dim( ̂θ) − 2 ln (p( ⃗d | ̂θ))

a. Akaike information criterion (AIC) [Akaike, 1974]

b. Bayesian information criterion (BIC) [Schwartz, 1978] 

EBIC( ⃗d , ̂θ) = dim( ̂θ) ln (dim( ⃗d )) − 2 ln (p( ⃗d | ̂θ))

̂θ = arg min
θ

p( ⃗d |θ)

valid when dim( ⃗d ) >> dim( ̂θ)
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Cross-validation

(1) Randomly partition data into 
a “training” set, and a “test” 
set.    

(2) Fit model to training set.  
Measure error on test set. 
(3) Repeat (many times). 
(4) Choose model that 
minimizes the average cross-
validated (“test”) error
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Using cross-validation to select the 
degree of a polynomial model:

A resampling method for estimating predictive error of a model.  
Widely used to identify/avoid over-fitting, and to provide a fair 
comparison of  models.
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Ridge regression  
(a.k.a. Tikhonov regularization)

Equivalent formulation: MAP estimate, 
assuming Gaussian likelihood & prior!

Ordinary least squares regression:

“Regularized” least squares regression:

Choose lambda by cross-validation:
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7th-order polynomial regression:

�̂ridge = (XTX + �I)�1XT~y
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Linear regression:
Squared bias ⇡ 0.006
Variance ⇡ 0.627
Pred. error ⇡ 1 + 0.006 + 0.627
Pred. error ⇡ 1.633

Ridge regression, at its best:
Squared bias ⇡ 0.077
Variance ⇡ 0.403
Pred. error ⇡ 1 + 0.077 + 0.403
Pred. error ⇡ 1.48
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[from http://www.stat.cmu.edu/~ryantibs/datamining/]

Mean squared error for our last example:
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Ridge regression in R: see the function lm.ridge in the package
MASS, or the glmnet function and package
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Ridge Regression  trades off bias and variance:



MAP interpretation: 
Gaussian noise, 
“Laplacian” prior
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LASSO vs. ridge regression
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Figure 2.1 Left: Coe�cient path for the lasso, plotted versus the ¸1 norm of the
coe�cient vector, relative to the norm of the unrestricted least-squares estimate —̃.
Right: Same for ridge regression, plotted against the relative ¸2 norm.
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Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |—1|+|—2| Æ t and —2

1 +—2
2 Æ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function. The
point ‚— depicts the usual (unconstrained) least-squares estimate.

10 THE LASSO FOR LINEAR MODELS

algorithms for finding its solutions. More details are given in Exercises (2.3)
and (2.4).

As an example of the lasso, let us consider the data given in Table 2.1, taken
from Thomas (1990). The outcome is the total overall reported crime rate per

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city funding hs not-hs college college4 crime rate
1 40 74 11 31 20 478

2 32 72 11 43 18 494

3 57 70 18 16 16 643

4 31 71 11 25 19 341

5 67 72 9 29 24 773

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

50 66 67 26 18 16 940

one million residents in 50 U.S cities. There are five predictors: annual police
funding in dollars per resident, percent of people 25 years and older with four
years of high school, percent of 16- to 19-year olds not in high school and not
high school graduates, percent of 18- to 24-year olds in college, and percent
of people 25 years and older with at least four years of college. This small
example is for illustration only, but helps to demonstrate the nature of the
lasso solutions. Typically the lasso is most useful for much larger problems,
including “wide” data for which p ∫ N .

The left panel of Figure 2.1 shows the result of applying the lasso with
the bound t varying from zero on the left, all the way to a large value on
the right, where it has no e�ect. The horizontal axis has been scaled so that
the maximal bound, corresponding to the least-squares estimates —̃, is one.
We see that for much of the range of the bound, many of the estimates are
exactly zero and hence the corresponding predictor(s) would be excluded from
the model. Why does the lasso have this model selection property? It is due
to the geometry that underlies the ¸1 constraint Î—Î1 Æ t. To understand this
better, the right panel shows the estimates from ridge regression, a technique
that predates the lasso. It solves a criterion very similar to (2.3):

minimize
—0,—

Y
]

[
1

2N

Nÿ

i=1
(yi ≠ —0 ≠

pÿ

j=1
xij—j)2

Z
^

\

subject to
pÿ

j=1
—2

j Æ t2.

(2.7)

The ridge profiles in the right panel have roughly the same shape as the lasso
profiles, but are not equal to zero except at the left end. Figure 2.2 contrasts
the two constraints used in the lasso and ridge regression. The residual sum

[From Hastie, Tibshirani, Wainwright 2015] �
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Next time: the lasso

The lasso combines some of the shrinking advantages of ridge with
variable selection

(From ESL page 71)

21

“relaxed LASSO”

The “Relaxed LASSO” 

To reduce bias, re-solve for non-
zero coefficients after eliminating 
unused regressors

LASSO

̂βOLS

⃗β 1

⃗β 2



• K-Means (Lloyd, 1957)

Clustering

• “Soft-assignment” version of K-means 
    (a form of Expectation-Maximization - EM)

• In general, alternate between: 
1) Estimating cluster assignments 
2) Estimating cluster parameters 

• Coordinate descent: converges to (possibly local) minimum 

• Need to choose K (number of clusters) - cross-validation!



• Estimating cluster assignments: given class centers, 
assign each point to closest one.Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp
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Vk = {x 2 Rp : kx� ckk22  kx� cjk22, j = 1, . . .K}, k = 1, . . .K

These are convex polyhedra (we’ll see them again when we study
classification)
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• Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-Means algorithm - alternate between two steps:

Soap bubbles:



K-means example

Here Xi 2 R2, n = 300, and K = 3
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[from R. Tibshirani, 2013]



K-means example, multiple runs

Here Xi 2 R2, n = 250, and K = 4, the points are not as
well-separated
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These are results of result of running the K-means algorithm with
di↵erent initial centers (chosen randomly over the range of the
Xi’s). We choose the second collection of centers because it yields
the smallest within-cluster variation
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Warning: Initialization matters (due to local minima) … 

Three solutions obtained with different random starting points:

[from R. Tibshirani, 2013]



K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

(CS5350/6350) Data Clustering October 4, 2011 21 / 24

K-means failures



ML for discrete mixture of Gaussians: soft K-means

= assignment probability

= mean/covariance of class k

Intuition: alternate between maximizing these two sets of variables 
(“coordinate descent”) 

Essentially, a version of K-means with “soft” (i.e., continuous, as 
opposed to binary) assignments!

p(~xn|ank, ~µk,⇤k) /
X

k

ankp
|⇤k|

e�(~xn�~µk)
T⇤�1

k (~xn�~µk)/2

ank

{~µk,⇤k}



[wikipedia]



Standard solution:
1. Threshold to find segments containing  spikes
2. Reduce dimensionality of segments using PCA
3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Application to neural “spike  sorting”



A

synchronous spiking superposition for various time shifts

C

P
C

 2
 p

ro
je

ct
io

n

B

+ =

PC 1 projection

P
C

 2
 p

ro
je

ct
io

n

+ =

D

PC 1 projection

0 ms

+0.1 ms

-0.15 ms+0.45 ms

Failures of clustering for near-synchronous spikes

[Pillow et. al. 2013]
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Figure 4: Visualization of spike sorting results for simulated data [9] (top row) using
waveforms in Fig. 3(a), and tetrode data [13, 3] (bottom and middle rows). (a,c,e):
Spike identification arising from standard clustering (Section 1.1). Each marker represents
the projection of a voltage segment onto the leading 2 principal components. Points,
circles, and crosses represent hits, missed spikes, and false positives, respectively, with
color indicating cell identity. Gray points (bottom two rows) correspond to segments of
real data for which no ground truth is available. (b,d,f): Spike identification arising
from our method, represented in the same space as (a,c,e). Insets show example voltage
segments containing overlapping spikes (corresponding to numbered points in (a,c)) in
the time domain. Colored vertical lines in the insets represent the occurrence times of
ground truth spikes (top row) and spikes estimated by our method (bottom row).
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Simulated data  [Quiroga et. al. 2004]

PC 1 PC 1

clustering (K-means) CBP

[Ekanadham et al, 2014]


