Mathematical Tools for Neural and Cognitive Science

Fall semester, 2021

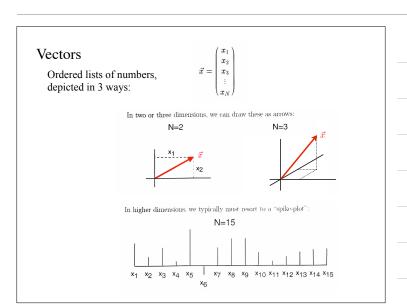
Section 1: Linear Algebra

Linear Algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier"

- Gilbert Strang, Linear Algebra and its Applications

... and this is even more true today than when the book was published!



Vector operations

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
 - definition/notation: sum of pairwise products
 - geometry: cosines, squared length, orthogonality test

[on board: geometry]

Inner product with a unit vector

- projection
- distance to line
- change of coordinates

[on board: geometry]

Vectors as "operators"

- "averager"
- "windowed averager"
- "smooth averager"
- "local differencer"
- "component selector"

[on board]

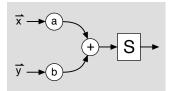
1	

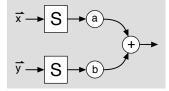
Linear System

S is a linear system if (and only if) it obeys the principle of superposition:

$$S(a\vec{x}+b\vec{y})=aS(\vec{x})+bS(\vec{y})$$

For any input vectors $\{\vec{x}, \vec{y}\}\$, and any scalars $\{a, b\}$, the two diagrams at the right must produce the same response.



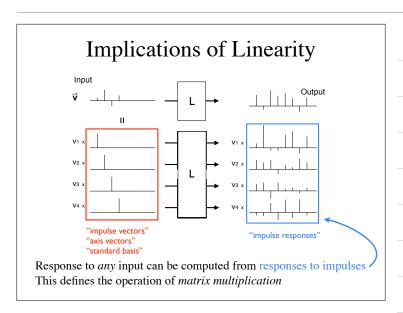


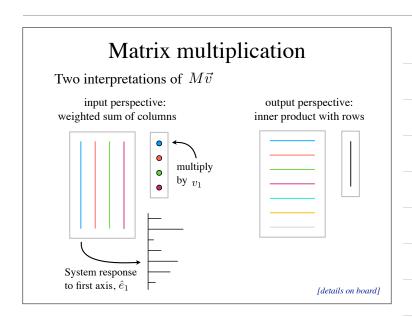
Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
 - conceptualize fundamental issues
 - provide baseline performance
 - provide building blocks for more complex models

Implications of Linearity

Implications of Linearity Input V1 x V2 x V3 x V4 x write input vector as weighted sum of "impulse vectors" "standard basis" "axis vectors"



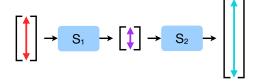


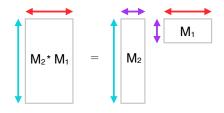
Matrix multiplication

- two interpretations of $M\vec{v}$:
 - weighted sum of columns
 - inner products with rows
- transpose A^T , symmetric matrices $(A = A^T)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.

[details on board]

Cascaded linear systems => product of matrices





Matrix multiplication

- two interpretations of $M\vec{v}$:
 - "input perspective": weighted sum of columns
 - "output perspective": inner product with rows
- transpose A^T , symmetric matrices $(A = A^T)$
- distributive property: directly from linearity!
- associative property: cascade of two linear systems is linear. Defines matrix multiplication.
- generally *not* commutative $(AB \neq BA)$, but note that $(AB)^T = B^TA^T$
- vectors as matrices: Inner products, Outer products

[details on board]

Orthogonal matrices

- square shape (dimensionality-preserving)
- rows are orthogonal unit vectors
- $\bullet\,$ columns are orthogonal unit vectors
- performs a rotation of the vector space (with possible axis inversion)
- preserve vector lengths and angles (and thus, dot products)
- inverse is transpose

Diagonal matrices

All matrices

- arbitrary rectangular shape all off-diagonal entries are zero
- · squeeze/stretch along standard axes
- if non-square, creates/discards axes
- inverse is diagonal, with inverse of non-zero diagonal entries of original

(Venn Diagram)

Singular Value Decomposition (SVD)

Any matrix M can be factorized as

$$M = U S V^T$$

with U, V orthogonal, S diagonal

- geometry: "rotate, stretch, rotate"
- columns of *V* are basis for *input* coordinate system
- \bullet columns of U are basis for *output* coordinate system
- S rescales axes, and determines what "gets through"

[details on board]

SVD geometry (in 2D)

Apply M to four vectors (heads at colored points):

$$M = U S V^T$$

rotate

stretch

rotate

 V^T
 S
 U

(note order of transformations)

Singular Value Decomposition (SVD)

Any matrix M can be factorized as $M = U S V^T$

with U, V orthogonal, S diagonal

- interpretation: sum of "outer products"
- non-uniqueness? permutations, sign flips
- nullspace and rangespace
- inverse and pseudo-inverse

[details on board]

