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Section 2: Least Squares

Least squarcs regression: “objective” or “error”
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Geometry:

Note: this is a 2-D cartoon
of the N-D vectors, not the
two-dimensional (x,y)
measurement space of
previous plots!

Note: partition of sum of squared data values:
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Solution via the “Orthogonality Principle”:

Construct matrix X, containing columns &7and o

Error

vector
2D vector space

containing all linear
combinations of ¥
and T2

Alternatively, can solve using SVD...
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where ¢ =UTy, g*=V"j3
Solution: B3, x = Yi/Sk, for each k

or ggpt = S#ﬂ* = gopt = VS#UT:J

[on board: transformations, elliptical geometry]

Fitting a parametric model (general)

To fit model f3(%) to data {Zn,¥n},

optimize parameters 3 to minimize an error function:
mﬁin Z E (G, 5(Zn))
n

Ingredients: data, model, error function, optimization method




Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
(possibly) nonunique

Iterative descent,
guaranteed

Closed-form
guaranteed

Optimization

N\

Quadratic

Interpretation warning: fitting a line does not
guarantee data actually lie along a line

These 4 data sets give the same regression fit, and same error:
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[Anscombe, 1973]
Polynomial regression
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Polynomial regression - how many terms?
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(to be continued, when we get to “statistics”...)

Weighted Least Squares

mﬂinz [Wn (Yn — ﬁxn)]z

= min||W (7 — 52)|

diagonal matrix

Solution via simple extensions of basic regression solution
(ie,let y* =Wy and £ = WZ and solve for 8 )
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Outliers

error (y- ﬁapt X)

“Trimming”... discard points with large error.
Note: a special case of weighted least squares.

® data
- = —true
Lsfit

trimmedLSfit
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Trimming can be done iteratively (discard outlier, re-fit, repeat),

a so-called “greedy” method. When do you stop?




More generally, use a “robust” error metric.
For example:

fld) = d?

f(d) =log(c* + d?)

“Lorentzian”

Note: generally can’t obtain solution directly (i.e., requires an
iterative optimization procedure).

In some cases, can use iteratively re-weighted least squares (IRLS)...

Iteratively Re-weighted Least Squares (IRLS)
d?

f(d)

initialize: wfzo) =1

BY = arg mgnz w'?) (yn — B(i)mn)Q
iterate " iterate
WD f(yn — 5.(1‘)%)
" |yn - 5(l)xn|

(one of many variants)

Constrained Least Squares
min || — X 5|2 where € - f =

B

Can be solved exactly using linear algebra (SVD)...
[on board, with geometry]




rotate by V7

stretch/squeeze by S* (nonzero rows of S)
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rotate by V7

B =v"g

stretch/squeeze by S* (nonzero rows of S)
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Solution:
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Write solution as: .JC_UPL Yy +nc

Solve for ~:
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Standard Least Squares regression
Error is vertical distance .
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(in the “dependent
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Total Least Squares Regression
(ak.a “orthogonal regression”)

Error is squared distance 4
from the fitted line...

=33

expressed as: min ||Daf|?, where |[a|]* = 1
u

Note: “data” matrix D now includes both x and y coordinates

Variance of data D, projected onto axis u: T o min
[USVTall? = [|SVTal? = ||sa][2 = |||, o
where D =USVT, a*=VvTa, @ = Sa* —o—p

Set of U’s of Set of ©™’s of First two components
length 1 length 1 of @** (rest are zero!),
(i.e., unit vectors) (i.e., unit vectors) for three example S'’s.
Olympic gold medalists '\C";Cr?g'e
(Rio, 2016) (USA)

Thomas Rohler (Germany)

3D geometry: L
Javelin, Discus, Shotput... Sandra Perkovié (Croatia)




Eigenvectors/eigenvalues

Define symmetric matrix: ¢ An eigenvector is a vector that is
rescaled by a matrix (i.e.,
Cc=DTD direction is unchanged)
_ (U SVT)T ( U SVT) ¢ The corresponding scale factor is

called the eigenvalue

T7rT T
=VsS Ui usv e The columns of V (denoted ¥y)
_ V( ST S) VT are eigenvectors of C, with
corresponding eigenvalues s? :

e “rotate, stretch, rotate back” Cop, =V (S s )VTf}k
¢ The matrix C “summarizes” the =V ST S)éx
shape of the data with an S
ellipsoid: principal axes are = spVeég

columns of V, dimensions are

= 82 @k
diagonal elements of § k

Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse
(ellipsoid) using a simple procedure:

(1) Subtract mean of all data points, to re-center around origin
(2) Assemble centered data vectors in rows of a matrix, D
(3) Compute the SVD of D:

D=Usv"

or equivalently compute eigenvectors of C' = DT D:
C=VAVT

(4) Columns of V are the principal components (axes) of

the ellipsoid, diagonal elements §; or+/ Ay are the
corresponding principle radii

Example: PCA for dimensionality reduction and visualization
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