Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2021

Section 4:
Summary Statistics & Probability

Statistics is the science of learning from experience, especially ex-
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques -become the analytic methods of choice
in biomedical science, psychology, education, economics, communi-
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as-
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick-
ing out non-existent patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a noisy background,
and also provides strict checks against the overinterpretation of
random patterns.

[Efron & Tibshirani, 1998]

Historical context

1600’s: Early notions of data summary/averaging
¢ 1700’s: Bayesian prob/statistics (Bayes, Laplace)
* 1920’s: Frequentist statistics for science (e.g., Fisher)

* 1940’s: Statistical signal analysis and communication,
estimation/decision theory (e.g., Shannon, Wiener, etc)

* 1950’s: Return of Bayesian statistics (e.g., Jeffreys, Wald,
Savage, Jaynes...)

* 1970’s: Computation, optimization, simulation (e.g,. Tukey)

* 2000’s: Machine learning (large-scale computing +
statistical inference + lots of data)

* Also (since 1950°s): statistical neural/cognitive models!




Statistics as summary

0.1, 45, -23, 08, -1.1, 32, ...

“The purpose of statistics is to replace a quantity of data
by relatively few quantities which shall ... contain as much
as possible, ideally the whole, of the relevant information
contained in the original data”

- R.A. Fisher, 1934

Descriptive statistics

Data “Dispersion”

T
A

“Central tendency”

Descriptive statistics: Central tendency

* We often summarize data with averages. Why?

* Average minimizes the squared error (as in regression!):

N 1/p
1
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e In general: minimize L, norm:  arg min [N Z |z, — ¢| }
* p=1 :median, My
e p— 0 :mode (location of maximum)
* p — oo : midpoint of range

¢ Issues: outliers, asymmetry, bimodality




Descriptive statistics: Dispersion

e Sample variance (squared standard deviation):

2 : I < 2 1< =2
sx:mClnNZ(xn—c) :NZ(xn—x)
n=1 n=1
1 & 1
2 =2 =112 2
== ) x,—Xx=—|[x]"—x
~ D ST

n=1
(side note: We’ll talk about dividing by N vs. N-1 later)

e Mean absolute deviation (MAD) about the median:
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¢ Quantiles (eg: “90% of data lie in range [1.5 8.2]”)

Xp — M,

A note on notation

e We have, and will continue to use the notation for a “sample
mean” (X) and a “sample standard deviation” (s) or variance

(s?).

e Statistics makes a distinction between these sample values
and the corresponding “population” values of mean (x) and
variance (67).

This really doesn't belong here! ... we
aver

e We’ll return to this distinction later on in the =

for now only consider sample data and stick t

corresponding notation.

Descriptive statistics: Multi-D

- —_ X,
Data points: {dn} n€[l...N], in2-D: dnz[y”]

As in 1D: define central tendency as vector that minimizes the
sum of squared distances to all data points:

- —
d = argmin Z ld,—<l?
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= arg min 2 (x,—c)*+ (o, — Cy)2 (in 2-D)
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Descriptive statistics: Multi-D

Data points: {CT,,} n € [l...N]

Sample mean (average):
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Affine transformations
If l_;n =M (Jn - [i) (translate, then rotate-stretch-rotate)

then E:M(J—E’)
Cy=MCyMT

Special case: “re-center” and “normalize” the data:

T L0
= |* M= |5 ) .
Y 0 Sy (Pearson
correlation
oy coefficient)
then l_)_ |:0:| Ob _ s]- Sz Sy
= R
0 Sz Sy ] [on board]
Correlation

Y (normalized)

3 -2 -1 0 1 2 3
X (normalized)




Correlation r captures dependency

1 0.8 0.4 0 -0.4 -0.8

PV AN

... but not slope!

Regression (revisited)

y=pT+¢
Optimal regression line slope:
ST —
3= TY Sy
Ty s2

Error variance:

52 = sf/ — 2854y + 3252

2 .. .
Sy Partition of variance:
2 Y
=8, - —

$2 error variance = data variance - explained variance
x
Expressed as a proportion of a)?: “r-squared”
9 9 (proportion
S S f variance
e _ 1 o _ g of variance
52 5252 explained)
Yy -y

Probability: an abstract mathematical
framework for describing random quantities, or
stochastic models of the world

Statistics: use of probability to summarize,
analyze, interpret data. Fundamental to all
experimental science.
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Inference

Probabilistic Middleville

In Middleville, every family has two children, brought by
the stork.

The stork delivers boys and girls randomly, with family
robabilities {BB,BG,GB,GG}={0.2,0.3,0.2,0.3 el
’ { = robab\\\s'&C mod

You pick a family at random and discover that one
of the children is a girl. new datd

What are the chances that the other child is a girl?
inferenc®

Statistical Middleville

In Middleville, every family has two children, brought by
the stork.

In a survey of 100 of the Middleville families, 32 have two

irls, 23 have two boys, and the remainder one of eagb
eV

You pick a family at random and discover that one
of the children is a girl. new data

What are the chances that the other child is a girl?
inference




Univariate Probability (outline)

e distributions: discrete and continuous
® cxpected value, moments
® transformations: affine, monotonic nonlinear

e cumulative distributions. Quantiles, drawing
samples

Frequentist view of probability: limit of infinite data

) probability
data —  histogram distribution
{x,} {c Iy} P)

P(x)

Probability distributions

Discrete random variable Continuous random variable
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Example distributions

a not-quite-fair coin roll of a fair die sum of rolls of
(Bernoulli) (uniform) two fair dice
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clicks of a Geiger counter, horizontal velocity of gas
in a fixed time interval ... and, time between clicks molecules exiting a fan
(Poisson) (exponential) (Gaussian)
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[Figure: Sean Owen, Cloudera Engineering]

Expected value (discrete random variable)

E(@) =3 @ plan)
k=1

(the mean, [iz)

a weighted sum over the discrete values

iz
K
More generally: E (f(x)) = Z f(zr)p(zr)  (sum over discrete values)

Sample average, an estimate of the expected value:

N
- 1
E (f(l‘)) ~ f(x) = N Z f(xn) (sum is over data samples!)
n=1

Sample average converges to expected value as one gathers more data. ..




Expected value (continuous random variable)

. probability
data histogram distribution
{x,) (e ) PX)
( {center, height} of bins )
1 1 —r —
x:Nan szzk:ckhFcTh MX—JXP(X)dx
Expected value (continuous)
E(z) = /33 p(z) dx [“mean”, p]
E(2?) = / 2*p(z) dx [“second moment”, 2]
B((w—w?) = [ pla) do “variance” o
- /pr(:r) do — p? [m2 minus u*]

E(f(z)) = /f(x) p(z) dx [“expected value of 1]

Note: expectation is an inner product, and thus linear, so:

E(af(z) + bg(z)) = aE (f(x)) + bE (g9(2))

Transformations of scalar random variables

Y=aX+b “affine” (linear plus constant)
Analogous to sample mean/covariance:

uy=EQX)=abEX)+b=auy+b

oi=E ((Y—,uy)2> =E ((aX— a,uX)2> = a’c}

1 y—>b
Full distribution: ~ py(y) = - DPx P

Y=g(X) “monotonic” (derivative > 0)

_ Pl )

) ()




P(y) f(x)
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Cumulative distributions
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Confidence intervals
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Drawing samples - discrete

0.5
0.375
0.25

0.125

Drawing samples - continuous

3) Result is ) 2) Tr'ansform
uniformly o - using the
distributed! s> o08 cumulative
distribution
function
° %o 100 150
X
p0(®) Px(c”"(y))
Y —
(¢ (y))
-1
P=(c"(y)) s samo
= _ = ample
pz(c71(y)) b from p(x)
50 100 150
Drawing samples - continuous
- 1
1) Draw / 2) Transform
uniform — using the
sample 3> Fos inverse
cumulative
distribution
o 0 function
50 100 150
X
3) This gives
= a sample
= from p(x) !

100
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Multi-variate probability (outline)

* Joint distributions

* Marginals (integrating)

* Conditionals (slicing)

* Bayes’ rule (inverse probability)

* Statistical independence (separability)
* Mean/Covariance

¢ Linear transformations

Joint and conditional probability - discrete
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Conditional probability

Neither A nor B

p(A& B)

p(A4| B) = probability of 4 given that B is asserted to be true = B)
P




Joint and conditional probability - discrete
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P(Ace)
P(Heart)

P(Ace & Heart)
P(Ace | Heart)
P(not Jack of Diamonds)
P(Ace | not Jack of Diamonds)

e

“Independence”

Y
=T

Joint distribution (continuous)
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p(w,y)

Marginal distribution




Conditional distribution

p(z,y) p(zly = 90)

50 100 150
X

Conditional distribution

150
>100 !
50 100 150
%o 100 150 "
X
p(zly =90) = p(z,y = 90 p(w y =90)d
/
More generally:

p(w|y) = p(ZE, y)/p(y> slice Jomt distribution normahze (by marginal)

Bayes’ Rule

LII. An Effay towards folving a Problem in
the Dottrine of Chances. By the late Rev.
My Bayes, F. R.S. communicated by Mr.
Price, in a Letter to John Canton, A. M.
F.R.S.

Dear Sir,

Read Dtc <25 Now fend you an effay which I have

17% I found among the papers of our de-
ceafed fncnd Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(zly) = p(y|z) p(z)/p(y)

(a direct consequence of the definition of conditional probability)




Bayes’ Rule

p(A4| B) = probability of 4 given that B is asserted to be true = p(A(i)B)
p
p(A& B)= p(B)p(A4|B)
=p(A)p(B|A4)
B|A)p(A
ép(A‘B):p( | A p(4)

p(B)

Conditional vs. marginal

150 0.035
008 P(x|Y=120)
Q0025
L 002
100 ? 0.015
=
a 0.01 P(X)
0.005
%o 100 150
5% 100 150 x

In general, the marginals for different Y values differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?

Statistical independence

100,

90

Random variables X and Y are statistically
independent if (and only if): >

p(x,y)=px)p(y) Vxy

%0%80 e0 100 110 120
x

(note: for discrete distributions, this is an outer product!)

Independence implies that a// conditionals are equal to the
corresponding marginal:

p(x|y)=p(x,y)/ p(y)=p(x) Vx,y




Mean, covariance, affine transformations
ForRV. X, @, =EX), C,=E((¥ - w)(x - 1))

ForRV.y =M(X - @),
analogous to results for sample mean/covariance:

7, = E(M(F - @)
=M (E(X)-a))
(7~ @)

C, = E((M(X = T)M(T — 7))
= ME((F - T))(F = 7)) M
=MCM"

Special case: Sum of two RVs

= _7r[X

Let Z=X+Y, or Z=1 [Y]
Hz = Hx + Hy

2 _ 2 2
0, = 0y + 20yy + 0y

Special case: if X and Y are independent, then:
E(XY) = E(X)E(Y) and thus oyy =0

2 _ 2 2
0; = oy + oy

p,(z) is the convolution of p,(x) and py(¥)

[on board]

Gaussian (a.k.a. “Normal”) densities

One-dimensional:

(@) 1 _emw?
p €Tr) = e 20

V2mro? 7
Alt. notation: 2 ~ N (p, 0%) ;L

Multi-dimensional:

1 —@-TC N @-0)/2

"= e ¢

mean: [0.2,0.8]
cov: [1.0-0.3;
-03 04]




Gaussian properties

(2) 1 _(e=w?
p €Tr) = 20
V2mo?
a
(@) = ! o E—D)T O E- 1) /2
(2m)N|C] '

* joint density of indep Gaussian RVs is elliptical [casy]

¢ conditionals of a Gaussian are Gaussian [easy]

* marginals of a Gaussian are Gaussian

* product of two Gaussian dists is Gaussian [easy]

* sum of independent Gaussian RVs is Gaussian

* the most random (max entropy) density of given variance

* central limit theorem: sum of many indep. RVs is Gaussian  [hard]

let P=C™! (the “precision” matrix)
p(zi|ze =a) e*%[P“(’“*‘“)QHP‘Z(ZI*‘“)(a*“?)*“}

—% [P1|zr‘1’+2(P12(a—u2)—P11,u1 )ES +]

67% (11 *u1+%(a*#2))P11 (IlfﬂlJr%(afuz))wL..,

= e

. - _ P
Gaussian, with:  p = pu; — P—(a - H)
1

2

Conditional: ° T Pill
WHLHH
Marginal: p(Il) = /p(f) dl‘g [on board]
/\ Gaussian, with: ag Z glu

Generalized marginals of a Gaussian

Z~ N(jiz, Cr)

=07

p(z) is Gaussian, with:

Mz = U

2 Ty -
o; = 4 Cpu

©




Correlation and regression

200 : TLS (largest
: 1 : eigenvector)
150
S Move this to inference section, and give Bayesian
inference explanation:
g 100 "
S s e S
&) Siope depends on relative precision of prior, and
SR ol 86 0% NI B e
=~ Galton
50 See Freedman ch 10/11 and https://fs.blog/2015/07/
regression-to-the-mean v
0 “R )
55 70 85 100 115 130 145 egression
Q to the mean”

Correlation implies dependency l-

VAR A B . N

... but not slope

1 1 1 -1 -1

S N

0 0
' I
T o
Correlation between variables does not uniquely indicate I-

the shape of their joint distribution

» Anscombe’s Quartet
Each dataset has the same summary statistics (mean, standard deviation,
correlation), and the datasets are clearly different, and visually distinct.




More extreme
examples !

X Mean:
Y Mean:

X SD
Y SD
Corr.
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Per capita cheese consumption r=0.95
orrelates with
N h 1 Number of people who died by becoming tangled in their bedsheets -
evertheless,

one can find -
correlation if . _

one looks forit! = - « « o w ...

Worldwide non-commercial space launches
orrelates w

Sociology doctorates awarded (US) r=0.79

Letters in Winning Word of Scripps National Spelling Bee
omrelatos with
Number of people killed by venomous spiders  r=0.81

http://www.tylervigen.com/spurious-correlations

Covariation/correlation does not imply causatiorl

* Correlation does not provide a direction for causality.
For that, you need additional (temporal) information.

* More generally, correlations are often a result of
hidden (unmeasured, uncontrolled) variahlec

Move these next few slides to inference section, after
defining Gaussian MAP estimation.

Then, this example will make more sense, and can be

Example: conditional independence:

p(A,B|H) = p(A|H)p(B|H)

e
N\
Ai .B

[On board: in Gaussian case, connections are explicit in the precision matrix]

Another example: “Simpson’s paradox” '-

expression of gene B

expression of gene A
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Milton Friedman’s Thermostat

. True interactions:
O = outside temperature (assumed cold)

I = inside temperature (ideally, constant) ; —_— .

E = energy used for heating o E
A/
o,

Statistical interactions, P=C-1:
Statistical observations: N _
e O and I uncorrelated Q — .
e [ and E uncorrelated o E
e O and E anti-correlated
D,

Some nonsensical conclusions:
e O and E have no effect on I, so shut off heater to save money!
® ]is irrelevant, and can be ignored. Increases in E cause decreases in O.

Statistical summary cannot replace scientific reasoning/experiments!

Summary: Correlation misinterpretations

¢ Correlation implies dependency, but lack of correlation
does not imply independence

e Correlation does not imply data lie near a line/plane/
hyperplane (subspace), with simple noise perturbations

¢ Correlation does not imply causation (temporally, or by
direct influence/connection)

¢ Correlation is a descriptive statistic, and does not eliminate
the need for scientific reasoning/experiment!




