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Fall semester, 2021

Section 3:
Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

® [inearity (previously discussed):

“linear combination in, linear combination out”

® Shift-invariance (new property):

“shifted vector in, shifted vector out”

® These two properties are independent (think of
some examples that have both, one, or neither)

LSI system

As before, express input as a sum of
“impulses”, weighted by elements of x




LSI system

* Linearity => response to X is sum of
responses to impulses, weighted by
elements of x

* Shift-invariance => responses to
impulses are shifted copies of each other

LSI system
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LSI systems are characterized by their “impulse response”
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Convolution
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® Sliding dot product
® Structured matrix
® Boundaries? zero-padding, reflection, circular
e Examples: impulse, delay, average, difference

Feedback LSI system
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(For this class, we’ll stick to feedforward (FIR) systems)
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[figure c/o Castleman]




“separable” filter
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® Quter product
e Simple design/implementation
e Efficient computation

[figure: Adelson & Bergen 85]

Discrete Sinusoids

example : k =2
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(» “frequency” (cycles/vectorLength)

conton), w=2nk/N

L} - 0 10 20 30
“frequency”

(radians/sample) example : A =15, ¢ =87/32

More generally: A cos(wn — @)
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“phase” (radians)
Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)
... via a well-known trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

We’ll also need conversions between polar
and rectangular coordinates:

x = Acos(¢), y= Asin(¢)

A= /22 +y2 ¢=tan"'(y/x)




Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

scale factors:
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=186, ¢=2n1112 1TT
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!




LSI response to sinusoids

z(n) = cos(wn) (input)

y(n)

Z T(m) COS (w(n — m)) (convolution formula)

m

LSI response to sinusoids

z(n) = cos(wn)

y(n)

Z r(m) o8 (w(n B m)) (trig identity)

cos(wn) sin(wn)

inner product of impulse response with cos/sin, respectively

LSI response to sinusoids

x(n) = cos(wn)

y(n)

Z r(m) cos (w(n —m))

cos(wn) sin(wn)

cr(w) cos(wn) + sr(w) sin(wn)

er(w




LSI response to sinusoids

z(n) = cos(wn)

yn) = 3 r(m) cos (w(n —m))

= Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

= cr(w) cos(wn) + Sr(w) sin(wn)

A, (w) cos(¢r (w))cos(wn) + (A, (w) sin(¢, (w))pin(wn)

(rectangular -> polar coordinates)
sr(w)

LSI response to sinusoids

z(n) = cos(wn)

y(n) = Zr(m)cos(w(nfm))

m

= Zr(m) cos(wm) cos(wn) + Zr(m) sin(wm) sin(wn)

= er(w) cos(wn) + sr(w) sin(wn)
= A.(w)cos(¢p(w))cos(wn) + Ap(w)sin(¢,(w)) sin(wn)

= Ar (w) COS(W?’L — ¢r (w)) (trig identity, in the opposite direction)

¢r(w)
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“Sinusoid in, sinusoid out” (with modified amplitude & phase)
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LSI response to sinusoids

More generally, if input has amplitude A, and phase ¢ ,

x(n) = Ay cos(wn — @)

then linearity and shift-invariance tell us that

y(n) =cos<wn

amplitudes multiply phases add
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“Sinusoid in, sinusoid out” (with modified amplitude & phase)
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The Discrete Fourier transform (DFT)

e Construct an orthogonal matrix of sin/cos pairs,
covering different numbers of cycles

® Frequency multiples of 27/N radians/sample,
(specifically, 2nk/N, for k=0,1,2,...N/2)

® For k=0 and k = N/2, only need the cosine part
(thus, N/2+1 cosines,and N/2 — 1 sines)

® When we apply this matrix to an input vector, think
of output as paired coordinates

e Common to plot these pairs as amplitude/phase

[details on board...]

Discrete Fourier Transform matrix

k=0 k=1 =2 k=3 k=N/2

N

F: e o o

. 2rk
cos <—n> sin (Tn> (plotted sinusoids are continuous, N=32)

The Fourier family

signal domain

continuous discrete

continuous | Fourier transform | discrete-time Fourier transform

discrete Fourier series discrete Fourier transform

frequency
domain

(we are here)

The “fast Fourier transform” (FFT) is a computationally efficient
implementation of the DFT, requiring Nlog(N) operations,
compared to the N2 operations that would be needed for matrix

multiplication.




Reminder: LSI response to sinusoids
z(n) = cos(wn)
y(n) = Y r(m)cos(w(n —m))

os(wn) in(wn)

= cr(w) cos(wn) + sr(w) sin(wn)

= A, (w)cos(¢p(w))cos(wn) + Ap(w)sin(¢,(w)) sin(wn)

= A, (w)cos(wn — ¢p(w))

These dot products are the Discrete Fourier Transform
of the impulse response, r(m)!

Fourier & LSI
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note: only 3 (of many) frequency components shown




Fourier & LSI
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note: only 3 (of many) frequency components shown

Fourier & LSI
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LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

" = cos(0) + isin(0) (Euler’s formula)
Ae™™ = Acos(wn) + iAsin(wn)

real part:

imaginary part:

[on board: reminders of addition/multiplication of complex numbers]




Complex exponentials:
“bundling” sine and cosine

eiwn L Ar(w) ei(wn—qﬁr(w)) — AT(w) e*id)r(w) eiwn
_ eiwn

E.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

eiwn L Ar(w) ei(wn—¢r(w)) _ Ar(w) e—i¢,.(u) eiwn

F.T. of impulse response!

Note: the complex exponentials are eigenvectors!

The “convolution theorem”

T e——p

convolve with 77




The “convolution theorem”
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convolve with 77
pointwise multiply by 7
y
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Fourier Transform
=N — ST

—

The “convolution theorem”
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convolve with 77
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Fourier Transform
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pointwise multiply by 7

Recap...

® Linear system
- defined by superposition

- characterized by a matrix

® Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector, which can be either:
» the impulse response

» the frequency response (amplitude and phase).
Specifically, the Fourier Transform of the impulse
response specifies an amplitude multiplier and a
phase shift for each frequency.




Discrete Fourier transform
(with complex numbers)

N-1
~ —twEn 27Tk
TR = E Tneé where wp = ——
N
n=0
1 Nl
Ty = — E T €k (inverse)
N k=0

[on board: why minus sign? why 1/N?]

Visualizing the (Discrete)
Fourier Transform

® Two conventional choices for frequency axis:

= Plot frequencies from k =0 to k = N/2

(in matlab: 1 to N/2+1)

= Plot frequencies from k = -N/2+1 to k= N/2

(in matlab: recenter using fftshift)

® Typically, we plot amplitude (and optionally,
phase), instead of the real/imaginary (cosine/sine)
components

Some examples

® constant

® sinusoid (see next slide)

® impulse

® Gaussian - “lowpass”

® Derivative of Gaussian - “bandpass”

® DoG (difference of 2 Gaussians) - “bandpass”

® Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]




e = cos(wn) + i sin(wn) ™" = cos(wn) — isin(wn)

1 . )
cos(wn) = i(e“""’ +e7 M)

j(eiwn o e—iwn)

sin(wn) = 5

Example for k=2, N=32 (note indexing and amplitudes):

7 i = fit(7) fitshift ()
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What do we do with
Fourier Transforms?

* Represent/analyze periodic signals

* Analyze/design LSI systems. In particular, how do
you identify the nullspace?
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Sampling causes “aliasing”
0 1 2 3 4 5 6 7 8 9 10

Sampling process is linear, but many-to-one (non-invertible)

o

“Aliasing” - one frequency masquerades as another [fon board]

Given the samples, it is common/natural to assume, or enforce,
that they arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies

________________________

Real-world
aliasing

downsample by 2

“Moiré pattern”




Pre-filtering to avoid spectral overlap (“aliasing”)

X (w) —[ L(w) ]—P/%—» X, (w)

lowpass filter,
L(w) mﬁ at /A

Real-world
aliasing

downsample by 2,

' '\with pre-filtering




