
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2020
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 11 Oct 2020
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Please: don’t wait until the day before
the due date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment. This file con-
tains matrices and vectors related to the color matching experiment presented in class. In
particular, the variable P is an N×3 matrix containing wavelength spectra for three “primary”
lights, that could be used in a color-matching experiment. For these problems N = 31, corre-
sponding to samples of the visible wavelength spectrum from 400nm to 700nm in increments
of 10nm.

The function humanColorMatcher.p simulates a normal human observer in a color matching
experiment. The input variable light should contain the wavelength spectrum of a test
light (a 31-dimensional column vector). The input variable primaries should contain the
wavelength spectra of a set of primary lights (typically, a 31 × 3 matrix, as for matrix P

described above). The function returns a 3-vector containing the observer’s “knob settings”
- the intensities of each of the primaries that, when mixed together, appear identical to the
test light. The function can also be called with more than one test light (by passing a matrix
whose columns contain 31-dimensional test lights), in which case it returns a matrix whose
columns are the knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random col-
umn vector with 31 positive components (use rand). Use humanColorMatcher to “run
an experiment”, asking the “human” to set the intensities of the three primaries in P to
match the appearance of the test light. Compute the 31-dimensional wavelength spec-
trum of this combination of primaries, plot it together with the original light spectrum,
and explain why the two spectra are so different, even though they appear the same to
the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional lights
to 3-dimensional knob settings. Specifially, run a set of experiments to estimate the
contents of a 3 × 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(c) The variable Cones contains (in the rows) approximate spectral sensitivities of the
three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L (long-
wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the S
(blue) cones. Applying the matrix Cones to any light ~l yields a 3-vector containing the
average number of photons absorbed by that cone (try plot(Cones’) to visualize them!).
Verify that the cones provide a physiological explanation for the matching experiment, in
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that the cone absorptions are equal for any pair of lights that are perceptually matched.
First, do this informally, by checking that randomly generated lights and their corre-
sponding 3-primary matching lights produce equal cone absorptions. Then, provide a
few lines of matlab code that provide a more mathematical demonstration, along with an
extended comment explaining your reasoning using concepts from linear algebra. [Hints
for two possible approaches: (1) write math/code that computes cone responses for any
test light and then computes the weighted combination of primaries that would produce
the same cone responses - show that this is numerically the same as the color-matching
matrix; (2) convince yourself, and explain why, it is sufficient to show that M and Cones

have the same nullspace. Then use SVD to demonstrate that this is true!]

(d) The function altHumanColorMatcher(light,primaries) simulates a color-deficient hu-
man observer in a standard color matching experiment. (i) for a random test light,
compare the knob settings for this observer with those of the normal human. Do this
for several runs of altHumanColorMatcher(light,primaries). How do they differ?
(ii) Compute cone absorptions for the test light, and for the mixture of three matching
primaries (by applying the Cones matrix). Do this for both the normal human observer,
and for multiple runs of the abnormal observer. Try this for several different test lights.
How do the cone responses of the normal and abnormal observers differ? Can you offer
a diagnosis of the underlying cause of color deficiency in the abnormal observer?

2. 2D polynomial regression. Load the file regress2.mat into your MATLAB environment.
The matrix D contains 3 columns of data, which we’ll refer to as X, Y , and Z respectively.

(a) plot Z as a function of X and Y using surf [note: you’ll need to reshape the three
column vectors into square matrices]. Execute the command rotate3d on, and use the
mouse to rotate the 3D space and view the data at different angles.

(b) Fit the Z values with polynomials in X and Y , up to order 3: p0(X,Y ) = β0, p1(X,Y ) =
β0 + β1X + β2Y , p2(X,Y ) = β0 + β1X + β2Y + β3X

2 + β4XY + β5Y
2, etc. Compute

this using svd and basic linear algebra manipulations that you’ve learned in class!

(c) For each of the polynomials, (a) plot the fitted surface (use surf) and data points
(use plot3) in the same figure, and rotate it around to convince yourself that the fit
is reasonable. (b) compute the error for each element of Z, plot a histogram of these
values, and compute the mean of the squared errors. How does the error behave as you
increase the order of the polynomial? Which polynomial do you think gives the “best”
fit? Explain.

3. Trimmed regression. One of the limitations of least-squares regression is sensitivity to out-
liers. A common solution is to iteratively discard the bad points. Load the file regress3.mat.
First solve the standard regression problem, using a constant and a linear term. Then write
a loop that locates the data point with the largest magnitude error (use MATLAB’s max),
eliminates that row from the data vector and regressor matrix, and then re-solves the regres-
sion problem. Note that you can also do this by including a diagonal weight matrix, and
zeroing the entry corresponding to the outlier. On each iteration, plot the points and the
best-fitting regression line, plot a histogram (use hist) of the squared errors over all points,
and record the average over these errors (i.e., on the nth iteration, save the average error in
the nth element of the vector). You may want put the two plots in separate figure windows,
and you may want to pause after each iteration (use the pause function). Run the loop until
half of the data points have been discarded.
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After running, plot the vector of average errors, as a function of iteration, in a third figure.
Based on this, and the histograms you observed, which iteration gave the “best” fit? To
visualize this solution, plot the corresponding regression line, and all of the data points,
labeling the discarded data points with a different plot symbol. Did you make a good choice?

4. Dimensionality reduction with PCA. Professors Hugh Bell and Wi Zell were recording
extracellular action potentials (i.e. spikes) from cat primary visual cortex late one evening
when their computer malfunctioned. It had already isolated a set of 400 time windows in
which voltages had crossed a threshold, indicating the presence of spike. But these traces
likely arose from multiple cells, with each cell producing a characteristic waveform, and the
computer failed before sorting the voltage traces to determine how many cells were present,
and which spikes arose from each cell. The professors come to you (the only math-tools-
enabled graduate student still in the building at that hour), asking for help. They provide
you with a file windowedSpikes.mat containing a 400 ×150 matrix, data, whose rows contain
the electrode measurements (voltages recorded for each 150 msec window, at 1msec intervals).
Your task is to determine how many neurons produced these 400 spikes.

(a) Plot the 400 waveforms superimposed and describe what you see. Be sure to label your
axes! Using these spike waveform plots, can you devise a way to deduce how many
neurons produced these spikes? Feel free to include an additional plot containing just a
subset of the waveforms in order to aid in your explanation.

(b) Perform principal components analysis (PCA) on your data, and plot the eigenvalues in
descending order (alternatively, compute the SVD of data). It might help to display the
eigenvalues on a log-scale. Interpret what you see.

(c) Measure the length of the projection of each of the 400 spike waveforms onto the top
two principal components of the dataset, and plot the resulting values as points in
2 dimensions. Describe what you see. Can you deduce how many distinct neurons
produced the 400 voltage traces?

(d) Now project each waveform onto the top three principal axes, and plot in 3 dimensions
(you may want to spin it around, using rotate3d in matlab). Are there any significant
changes you see? Using the 3D plot, can you inform Drs. Bell and Zell how many
neurons they likely recorded from?

(e) Extra credit: how would you determine which neuron fired each of the 400 observed
spikes? Describe your strategy, including appropriate linear algebraic expressions for
the required calculations.


